Krummenacher C, Rux A H, Whitbeck J C, Ponce-de-Leon M, Lou H, Baribaud I, Hou W, Zou C, Geraghty R J, Spear P G, Eisenberg R J, Cohen G H
Department of Microbiology, School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.
J Virol. 1999 Oct;73(10):8127-37. doi: 10.1128/JVI.73.10.8127-8137.1999.
The human herpesvirus entry mediator C (HveC/PRR1) is a member of the immunoglobulin family used as a cellular receptor by the alphaherpesviruses herpes simplex virus (HSV), pseudorabies virus, and bovine herpesvirus type 1. We previously demonstrated direct binding of the purified HveC ectodomain to purified HSV type 1 (HSV-1) and HSV-2 glycoprotein D (gD). Here, using a baculovirus expression system, we constructed and purified truncated forms of the receptor containing one [HveC(143t)], two [HveC(245t)], or all three immunoglobulin-like domains [HveC(346t)] of the extracellular region. All three constructs were equally able to compete with HveC(346t) for gD binding. The variable domain bound to virions and blocked HSV infection as well as HveC(346t). Thus, all of the binding to the receptor occurs within the first immunoglobulin-like domain, or V-domain, of HveC. These data confirm and extend those of Cocchi et al. (F. Cocchi, M. Lopez, L. Menotti, M. Aoubala, P. Dubreuil, and G. Campadelli-Fiume, Proc. Natl. Acad. Sci. USA 95:15700, 1998). Using biosensor analysis, we measured the affinity of binding of gD from HSV strains KOS and rid1 to two forms of HveC. Soluble gDs from the KOS strain of HSV-1 had the same affinity for HveC(346t) and HveC(143t). The mutant gD(rid1t) had an increased affinity for HveC(346t) and HveC(143t) due to a faster rate of complex formation. Interestingly, we found that HveC(346t) was a tetramer in solution, whereas HveC(143t) and HveC(245t) formed dimers, suggesting a role for the third immunoglobulin-like domain of HveC in oligomerization. In addition, the stoichiometry between gD and HveC appeared to be influenced by the level of HveC oligomerization.
人疱疹病毒进入介质C(HveC/PRR1)是免疫球蛋白家族的成员,被α疱疹病毒单纯疱疹病毒(HSV)、伪狂犬病病毒和牛疱疹病毒1型用作细胞受体。我们之前证明了纯化的HveC胞外域与纯化的1型单纯疱疹病毒(HSV-1)和2型单纯疱疹病毒(HSV-2)糖蛋白D(gD)直接结合。在此,我们使用杆状病毒表达系统构建并纯化了受体的截短形式,其包含细胞外区域的一个免疫球蛋白样结构域[HveC(143t)]、两个免疫球蛋白样结构域[HveC(245t)]或所有三个免疫球蛋白样结构域[HveC(346t)]。所有这三种构建体与HveC(346t)竞争gD结合的能力相同。可变结构域与病毒粒子结合并像HveC(346t)一样阻断HSV感染。因此,与受体的所有结合都发生在HveC的第一个免疫球蛋白样结构域即V结构域内。这些数据证实并扩展了Cocchi等人(F. Cocchi、M. Lopez、L. Menotti、M. Aoubala、P. Dubreuil和G. Campadelli-Fiume,《美国国家科学院院刊》95:15700,1998)的数据。使用生物传感器分析,我们测量了HSV毒株KOS和rid1的gD与两种形式的HveC的结合亲和力。HSV-1 KOS毒株的可溶性gD对HveC(346t)和HveC(143t)具有相同的亲和力。突变型gD(rid1t)由于复合物形成速率更快,对HveC(346t)和HveC(143t)的亲和力增加。有趣的是,我们发现HveC(346t)在溶液中是四聚体,而HveC(143t)和HveC(245t)形成二聚体,这表明HveC的第三个免疫球蛋白样结构域在寡聚化中起作用。此外,gD与HveC之间的化学计量似乎受HveC寡聚化水平的影响。