Suppr超能文献

核孔蛋白生物合成中的自催化作用。

Autoproteolysis in nucleoporin biogenesis.

作者信息

Rosenblum J S, Blobel G

机构信息

Laboratory of Cell Biology, Rockefeller University, New York, NY 10021, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11370-5. doi: 10.1073/pnas.96.20.11370.

Abstract

We have molecularly characterized a proteolytic cleavage in conserved nuclear pore complex proteins. This cleavage, previously demonstrated to be essential for the biogenesis of two nuclear pore complex proteins in mammals (Nup98 and Nup96) and yeast (Nup145-N and Nup145-C), occurs between Phe and Ser residues within a highly conserved domain in a polyprotein precursor. Here, we show that a protease is not involved in the cleavage event. By using a combination of domain mapping and site-directed mutagenesis, we demonstrate that the human nuclear pore complex protein Nup98 specifically cleaves itself between F863 and S864. A region of Nup98, amino acids 715-920, is able to cleave, whereas a smaller region, amino acids 772-920, does not cleave. In addition, we have generated a Nup98 mutant that cleaves under defined conditions in vitro. Further, the two cleaved fragments of Nup98 form a complex, providing a possible mechanism whereby specific, yet low-affinity, binding between Nup98 and Nup96 is responsible for the nuclear targeting of Nup96. Although apparently unrelated evolutionarily, Nup98 has converged on an autoproteolytic biogenesis mechanism similar to that of hedgehog proteins, the inteins, and the N-terminal nucleophile proteins.

摘要

我们对保守的核孔复合体蛋白中的蛋白水解切割进行了分子特征分析。这种切割先前已证明对哺乳动物(Nup98和Nup96)和酵母(Nup145-N和Nup145-C)中两种核孔复合体蛋白的生物合成至关重要,它发生在多蛋白前体中一个高度保守结构域内的苯丙氨酸和丝氨酸残基之间。在此,我们表明蛋白酶不参与该切割事件。通过结合结构域定位和定点诱变,我们证明人类核孔复合体蛋白Nup98在F863和S864之间特异性地自我切割。Nup98的一个区域,即氨基酸715 - 920,能够切割,而一个较小的区域,氨基酸772 - 920,则不能切割。此外,我们生成了一个在体外特定条件下能够切割的Nup98突变体。进一步地,Nup98的两个切割片段形成了一个复合体,这提供了一种可能的机制,即Nup98和Nup96之间特异性但低亲和力的结合负责Nup96的核靶向。尽管在进化上明显无关,但Nup98已经趋同于一种类似于刺猬蛋白、内含肽和N端亲核蛋白的自蛋白水解生物合成机制。

相似文献

1
Autoproteolysis in nucleoporin biogenesis.
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11370-5. doi: 10.1073/pnas.96.20.11370.
4
Molecular determinants of binding between Gly-Leu-Phe-Gly nucleoporins and the nuclear pore complex.
J Biol Chem. 2007 Nov 23;282(47):33968-76. doi: 10.1074/jbc.M707911200. Epub 2007 Sep 26.
7
Selective Removal of FG Repeat Domains from the Nuclear Pore Complex by Enterovirus 2A(pro).
J Virol. 2015 Nov;89(21):11069-79. doi: 10.1128/JVI.00956-15. Epub 2015 Aug 26.
8
The SONB(NUP98) nucleoporin interacts with the NIMA kinase in Aspergillus nidulans.
Genetics. 2003 Nov;165(3):1071-81. doi: 10.1093/genetics/165.3.1071.
9
Uncleavable Nup98-Nup96 is functional in the fission yeast Schizosaccharomyces pombe.
FEBS Open Bio. 2015 Jun 12;5:508-14. doi: 10.1016/j.fob.2015.06.004. eCollection 2015.

引用本文的文献

1
Off-pore Nup98 condensates mobilize heterochromatic breaks and exclude Rad51.
Mol Cell. 2025 Jun 19;85(12):2355-2373.e11. doi: 10.1016/j.molcel.2025.05.012. Epub 2025 Jun 5.
2
Nucleoporins cooperate with Polycomb silencers to promote transcriptional repression and repair at DNA double-strand breaks.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2415069122. doi: 10.1073/pnas.2415069122. Epub 2025 May 29.
3
4
"Off-pore" nucleoporins relocalize heterochromatic breaks through phase separation.
bioRxiv. 2024 Jul 18:2023.12.07.570729. doi: 10.1101/2023.12.07.570729.
5
Virus specificity and nucleoporin requirements for MX2 activity are affected by GTPase function and capsid-CypA interactions.
PLoS Pathog. 2024 Mar 21;20(3):e1011830. doi: 10.1371/journal.ppat.1011830. eCollection 2024 Mar.
6
The nuclear pore protein NUP98 impedes LTR-driven basal gene expression of HIV-1, viral propagation, and infectivity.
Front Immunol. 2024 Feb 21;15:1330738. doi: 10.3389/fimmu.2024.1330738. eCollection 2024.
8
Implications of a multiscale structure of the yeast nuclear pore complex.
Mol Cell. 2023 Sep 21;83(18):3283-3302.e5. doi: 10.1016/j.molcel.2023.08.025.
9
Cascade autohydrolysis of Alzheimer's Aβ peptides.
Chem Sci. 2023 Apr 12;14(19):4986-4996. doi: 10.1039/d2sc06668h. eCollection 2023 May 17.
10
PIDD1 in cell cycle control, sterile inflammation and cell death.
Biochem Soc Trans. 2022 Apr 29;50(2):813-824. doi: 10.1042/BST20211186.

本文引用的文献

1
The free energy of thiol ester hydrolysis.
J Biol Chem. 1960 Dec;235:3608-14.
3
Transport pathways of macromolecules between the nucleus and the cytoplasm.
Curr Opin Cell Biol. 1999 Jun;11(3):402-6. doi: 10.1016/S0955-0674(99)80056-8.
6
Nuclear import and the evolution of a multifunctional RNA-binding protein.
J Cell Biol. 1998 Nov 16;143(4):887-99. doi: 10.1083/jcb.143.4.887.
7
Nucleocytoplasmic transport: the soluble phase.
Annu Rev Biochem. 1998;67:265-306. doi: 10.1146/annurev.biochem.67.1.265.
8
Ran and nuclear transport.
J Biol Chem. 1998 Sep 4;273(36):22857-60. doi: 10.1074/jbc.273.36.22857.
9
Protein sequence similarity searches using patterns as seeds.
Nucleic Acids Res. 1998 Sep 1;26(17):3986-90. doi: 10.1093/nar/26.17.3986.
10
Karyopherins and kissing cousins.
Trends Cell Biol. 1998 May;8(5):184-8. doi: 10.1016/s0962-8924(98)01248-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验