Suppr超能文献

In vivo transfer of bacterial marker genes results in differing levels of gene expression and tumor progression in immunocompetent and immunodeficient mice.

作者信息

Lukacs K V, Porter C D, Pardo O E, Oakley R E, Steel R M, Judd D V, Browning J E, Geddes D M, Alton E W

机构信息

National Heart and Lung Institute at Imperial College, London, UK.

出版信息

Hum Gene Ther. 1999 Sep 20;10(14):2373-9. doi: 10.1089/10430349950017022.

Abstract

To optimize gene delivery for the treatment of malignant mesothelioma, expression of the beta-galactosidase marker gene was examined in a murine model of intraperitoneal malignant mesothelioma. The beta-galactosidase gene was delivered to the peritoneal cavity of tumor-bearing mice by various plasmid-liposome complexes or by replication-incompetent retrovirus, used alone or complexed to liposomes. In tumor samples from immunodeficient nude mice, moderate levels of gene expression were achieved by liposome-complexed plasmids. Retroviral gene delivery was more effective, and was increased nearly 10-fold by complexing the retrovirus to liposomes. In contrast, in tumor samples from immunocompetent CBA mice treated with the same vectors, no marker gene expression was detected. In immunodeficient mice, tumor growth was not affected by beta-galactosidase gene transfer. However, immunocompetent mice showed a significant decrease in tumor size and increase in survival time after beta-galactosidase delivery. Induction of cytotoxic T cells capable of lysing beta-Gal-transfected tumor cells suggests that tumor cells transduced with the bacterial beta-galactosidase gene may be eliminated in immunocompetent hosts. Our findings also indicate that plasmid-liposome complexes, which achieve a low level of gene expression, and retrovirus-liposome complexes, which result in nearly 100 times higher levels of gene expression in tumor cells in vivo, are similarly effective in inducing an antitumor immune response.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验