Khoyi M A, Gregory L G, Smith A D, Keef K D, Westfall D P
Departments of Pharmacology, Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, Nevada 89557-0001, USA.
J Pharmacol Exp Ther. 1999 Nov;291(2):823-8.
The characteristics of the Ca(2+) entry pathways that are activated by protein kinase C (PKC) in canine splenic artery were investigated. Phorbol 12, 13-dibutyrate (PDB) contracted tissues and increased Ca(2+) influx. PDB-induced contraction was reduced by preincubation of tissues in Ca(2+)-free Krebs' solution (1 mM EGTA) but was unaffected when Ca(2+)-free solution was applied after contraction was initiated with PDB. In contrast, (45)Ca influx and contraction induced by PDB were resistant to nifedipine, Cd(2+), Gd(3+), La(3+), or Ni(2+) whether added before or during exposure to PDB. Indeed, Cd(2+) reduced (45)Ca(2+) efflux and potentiated Ca(2+) influx, but not PDB-induced contraction. Norepinephrine (NE)-induced contractions were inhibited by preincubation in Ca(2+)-free Krebs' solution (1 mM EGTA). Nifedipine (10 microM) led to a small reduction in the NE-induced contraction but was without effect on (45)Ca(2+) influx. Pretreatment for 16 min with Cd(2+), Gd(3+), or La(3+) (each 1 mM) reduced or abolished NE-induced contraction and Ca(2+) influx. Application of these cations after exposure to NE did not affect (45)Ca(2+) influx but reduced tension. The Q(10) for the increase in (45)Ca(2+) influx was approximately 2 for high K(+) and NE, but 4 for PDB. The results suggest that stimulation of PKC in dog splenic artery activates a Ca(2+) entry pathway that is resistant to di- and trivalent cations. The inhibition of Ca(2+) influx by preincubating with cations during short-term exposure to NE may represent an action on Ca(2+) turnover that precedes activation of PKC.