Moschella M C, Menzies K, Tsao L, Lieb M A, Kohtz J D, Kohtz D S, Taubman M B
The Michael A. and Zena Wiener Cardiovascular Institute, Department of Medicine, The Mount Sinai School of Medicine, New York, NY 10029, USA.
Gene Expr. 1999;8(1):59-66.
SM-20 is a novel, evolutionarily conserved "early response" gene originally cloned from a rat aortic smooth muscle cell (SMC) cDNA library. SM-20 encodes a cytoplasmic protein, which is induced by platelet-derived growth factor and angiotensin II in cultured SMC and is upregulated in intimal SMC of atherosclerotic plaques and injured arteries. We have now examined SM-20 expression during differentiation of cultured skeletal myoblasts and during skeletal myogenesis in vivo. Low levels of SM-20 mRNA and protein were expressed in proliferating mouse C2C12 myoblasts. Differentiation by serum withdrawal was associated with a marked induction of SM-20 mRNA and the expression of high levels of SM-20 antigen in myotubes. The induction was partially inhibited by blocking differentiation with bFGF or TGFbeta. Similar results were obtained with the nonfusing mouse C25 myoblast line, suggesting that SM-20 upregulation is a consequence of biochemical differentiation and is fusion independent. During mouse embryogenesis, SM-20 was first observed at 8.5E in the dermomyotomal cells of the rostral somites. SM-20 expression progressed in a rostral to caudal pattern, with highest levels seen in the muscle primordia and mature muscles. SM-20 thus represents a novel intracellular protein that is regulated during skeletal muscle differentiation and development.