Suppr超能文献

锌蛋白中的羧酸盐结合模式:理论研究。

Carboxylate binding modes in zinc proteins: a theoretical study.

机构信息

Department of Theoretical Chemistry, Chemical Centre, Lund University, S-221 00 Lund, Sweden.

出版信息

Biophys J. 1999 Nov;77(5):2777-87. doi: 10.1016/S0006-3495(99)77110-9.

Abstract

The relative energies of different coordination modes (bidentate, monodentate, syn, and anti) of a carboxylate group bound to a zinc ion have been studied by the density functional method B3LYP with large basis sets on realistic models of the active site of several zinc proteins. In positively charged four-coordinate complexes, the mono- and bidentate coordination modes have almost the same energy (within 10 kJ/mol). However, if there are negatively charged ligands other than the carboxylate group, the monodentate binding mode is favored. In general, the energy difference between monodentate and bidentate coordination is small, 4-24 kJ/mol, and it is determined more by hydrogen-bond interactions with other ligands or second-sphere groups than by the zinc-carboxylate interaction. Similarly, the activation energy for the conversion between the two coordination modes is small, approximately 6 kJ/mol, indicating a very flat Zn-O potential surface. The energy difference between syn and anti binding modes of the monodentate carboxylate group is larger, 70-100 kJ/mol, but this figure again strongly depends on interactions with second-sphere molecules. Our results also indicate that the pK(a) of the zinc-bound water ligand in carboxypeptidase and thermolysin is 8-9.

摘要

采用密度泛函理论 B3LYP 方法和大基组,在几种锌蛋白活性位点的实际模型上研究了结合到锌离子的羧酸根的不同配位模式(双齿、单齿、顺式和反式)的相对能量。在带正电荷的四配位络合物中,单齿和双齿配位模式的能量几乎相同(相差 10 kJ/mol 以内)。然而,如果除了羧酸根之外还有带负电荷的配体,则单齿配位模式更有利。一般来说,单齿和双齿配位之间的能量差异较小,为 4-24 kJ/mol,它主要由与其他配体或第二配位层的氢键相互作用决定,而不是由锌-羧酸根相互作用决定。同样,两种配位模式之间的转换的活化能也较小,约为 6 kJ/mol,表明 Zn-O 势能表面非常平坦。单齿羧酸根的顺式和反式结合模式的能量差较大,为 70-100 kJ/mol,但这个数字也强烈依赖于与第二配位层分子的相互作用。我们的结果还表明,羧肽酶和糜蛋白酶中锌结合水配体的 pK(a)为 8-9。

相似文献

1
Carboxylate binding modes in zinc proteins: a theoretical study.
Biophys J. 1999 Nov;77(5):2777-87. doi: 10.1016/S0006-3495(99)77110-9.
2
Correlation of infrared spectra of zinc(II) carboxylates with their structures.
Spectrochim Acta A Mol Biomol Spectrosc. 2007 Feb;66(2):262-72. doi: 10.1016/j.saa.2006.02.050. Epub 2006 Feb 28.
3
Farnesyltransferase--new insights into the zinc-coordination sphere paradigm: evidence for a carboxylate-shift mechanism.
Biophys J. 2005 Jan;88(1):483-94. doi: 10.1529/biophysj.104.048207. Epub 2004 Oct 22.
4
Structural and electronic mimics of the active site of cobalt(II)-substituted zinc metalloenzymes.
J Inorg Biochem. 1980 Apr;12(2):131-41. doi: 10.1016/s0162-0134(00)80124-5.
5
Effect of the carboxylate shift on the reactivity of zinc complexes in the gas phase.
Inorg Chem. 2011 Apr 4;50(7):3153-8. doi: 10.1021/ic2002767. Epub 2011 Mar 7.
7
The carboxylate shift in zinc enzymes: a computational study.
J Am Chem Soc. 2007 Feb 7;129(5):1378-85. doi: 10.1021/ja067103n.
8
Coordination modes of bridge carboxylates in dinuclear manganese compounds determine their catalase-like activities.
Dalton Trans. 2009 Oct 28(40):8714-23. doi: 10.1039/b907687e. Epub 2009 Aug 28.

引用本文的文献

1
Thermodynamics of Metal-Acetate Interactions.
J Phys Chem B. 2024 Jan 25;128(3):684-697. doi: 10.1021/acs.jpcb.3c06567. Epub 2024 Jan 16.
2
Complexes of 2,4,6-trihydroxybenzoic acid: effects of intramolecular hydrogen bonding on ligand geometry and metal binding modes.
Acta Crystallogr C Struct Chem. 2022 Nov 1;78(Pt 11):653-670. doi: 10.1107/S2053229622009901. Epub 2022 Oct 25.
3
The Study of Zinc Ions Binding to α-, β- and κ-Casein.
Int J Mol Sci. 2020 Oct 30;21(21):8096. doi: 10.3390/ijms21218096.
4
New Set of Multicomponent Crystals as Efficient Heterogeneous Catalysts for the Synthesis of Cyclic Carbonates.
ACS Omega. 2019 Mar 13;4(3):5221-5232. doi: 10.1021/acsomega.9b00101. eCollection 2019 Mar 31.
5
Capturing LTA hydrolase in action: Insights to the chemistry and dynamics of chemotactic LTB synthesis.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9689-9694. doi: 10.1073/pnas.1710850114. Epub 2017 Aug 21.
6
Effect of donor atom identity on metal-binding pharmacophore coordination.
J Biol Inorg Chem. 2017 Jun;22(4):605-613. doi: 10.1007/s00775-017-1454-3. Epub 2017 Apr 7.
7
Zinc(II) Binding Site to the Amyloid-β Peptide: Insights from Spectroscopic Studies with a Wide Series of Modified Peptides.
Inorg Chem. 2016 Oct 17;55(20):10499-10509. doi: 10.1021/acs.inorgchem.6b01733. Epub 2016 Sep 26.
8
Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.
Biochim Biophys Acta. 2015 Nov;1854(11):1795-800. doi: 10.1016/j.bbapap.2015.02.022. Epub 2015 Mar 23.
9
Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications.
J Phys Chem B. 2015 Jan 22;119(3):1062-82. doi: 10.1021/jp506557r. Epub 2014 Sep 16.
10
Exploring the influence of the protein environment on metal-binding pharmacophores.
J Med Chem. 2014 Aug 28;57(16):7126-35. doi: 10.1021/jm500984b. Epub 2014 Aug 19.

本文引用的文献

1
Refined high-resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (class II) from Escherichia coli.
Acta Crystallogr D Biol Crystallogr. 1996 Nov 1;52(Pt 6):1082-91. doi: 10.1107/S0907444996009146.
2
Recent Advances in Zinc Enzymology.
Chem Rev. 1996 Nov 7;96(7):2375-2434. doi: 10.1021/cr950042j.
3
Structural and Functional Aspects of Metal Sites in Biology.
Chem Rev. 1996 Nov 7;96(7):2239-2314. doi: 10.1021/cr9500390.
4
Protein strain in blue copper proteins studied by free energy perturbations.
Proteins. 1999 Aug 1;36(2):157-74. doi: 10.1002/(sici)1097-0134(19990801)36:2<157::aid-prot3>3.0.co;2-y.
5
Analysis of zinc binding sites in protein crystal structures.
Protein Sci. 1998 Aug;7(8):1700-16. doi: 10.1002/pro.5560070805.
7
Structural analysis of zinc substitutions in the active site of thermolysin.
Protein Sci. 1995 Oct;4(10):1955-65. doi: 10.1002/pro.5560041001.
10
Refined crystal structure of carboxypeptidase A at 1.54 A resolution.
J Mol Biol. 1983 Aug 5;168(2):367-87. doi: 10.1016/s0022-2836(83)80024-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验