DeVit M J, Johnston M
Department of Genetics, Box 8232, Washington University School of Medicine, 660 S Euclid Avenue, St Louis, Missouri 63110, USA.
Curr Biol. 1999 Nov 4;9(21):1231-41. doi: 10.1016/s0960-9822(99)80503-x.
Mig1 is a transcriptional repressor responsible for glucose repression of many genes in the budding yeast Saccharomyces cerevisiae. Glucose regulates Mig1 function by affecting its phosphorylation, which is catalyzed by the Snf1 protein kinase. Phosphorylation alters the subcellular localization of Mig1, causing it to be nuclear when glucose is present, and cytoplasmic when glucose is absent.
Here, we report that Msn5, a member of the importin beta family of nuclear transport receptors, is required to export Mig1 from the nucleus when glucose is removed. Mig1 and Msn5 interacted in a yeast two-hybrid assay. Within the portion of Mig1 that regulates its nuclear transport, we found a region that directed its nuclear export. Within this region, two leucine-rich sequences similar to known nuclear export signals were not required for Mig1 export. The corresponding domain of the yeast Kluyveromyces lactis Mig1 conferred glucose-regulated Msn5-dependent protein export from the nucleus in S. cerevisiae. Sequence comparison with S. cerevisiae Mig1 revealed short patches of homology in K. lactis and K. marxianus Mig1 that might be Msn5-interaction domains. These regions overlapped with the serine residues predicted to be Snf1 phosphorylation sites, suggesting that Msn5 and Snf1 recognize similar sequences in Mig1. Altering these serines abolished glucose-dependent phosphorylation of Mig1 and caused it to be a constitutive repressor that was retained in the nucleus.
Mig1 contains a new nuclear export signal that is phosphorylated by Snf1 upon glucose removal, causing it to be recognized by the nuclear exportin Msn5 and carried out of the nucleus into the cytoplasm where it contributes to derepression of glucose-repressed genes.
Mig1是一种转录抑制因子,负责对出芽酵母酿酒酵母中许多基因进行葡萄糖抑制。葡萄糖通过影响Mig1的磷酸化来调节其功能,该磷酸化由Snf1蛋白激酶催化。磷酸化改变了Mig1的亚细胞定位,使其在有葡萄糖时位于细胞核中,而在无葡萄糖时位于细胞质中。
在此,我们报道,当葡萄糖被去除时,核转运受体importin β家族的成员Msn5是将Mig1从细胞核输出所必需的。在酵母双杂交试验中,Mig1与Msn5相互作用。在调节其核转运的Mig1部分内,我们发现了一个指导其核输出的区域。在该区域内,与已知核输出信号相似的两个富含亮氨酸的序列对于Mig1的输出不是必需的。酵母乳酸克鲁维酵母Mig1的相应结构域赋予了酿酒酵母中葡萄糖调节的、依赖Msn5的蛋白从细胞核输出的能力。与酿酒酵母Mig1的序列比较揭示了乳酸克鲁维酵母和马克斯克鲁维酵母Mig1中的短同源片段,可能是Msn5相互作用结构域。这些区域与预测为Snf1磷酸化位点的丝氨酸残体重叠,表明Msn5和Snf1识别Mig1中的相似序列。改变这些丝氨酸消除了Mig1的葡萄糖依赖性磷酸化,并使其成为一种组成型抑制因子,保留在细胞核中。
Mig1包含一个新的核输出信号,当葡萄糖被去除时,该信号被Snf1磷酸化,使其被核输出蛋白Msn5识别,并从细胞核转运到细胞质中,在那里它有助于解除对葡萄糖抑制基因的抑制。