Kayano K, Toda K, Naka Y, Pinsky D J
College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
Circulation. 1999 Nov 9;100(19 Suppl):II257-61. doi: 10.1161/01.cir.100.suppl_2.ii-257.
Lung preservation disrupts normal vascular homeostasis, resulting in increased permeability, vasoconstriction, and endothelial cell adhesion for neutrophils. We hypothesized that a storage strategy that best preserves post-lung transplantation (LTX) vascular homeostasis might be organ and species specific. Because of the potential utility of a rat LTX model for developing improved lung preservation strategies, we have attempted to identify the optimal physical conditions for rat lung graft storage.
Conditions that were tested included harvest inflation pressure (0, 10, or 20 mm Hg), inflation gas composition (100% N(2), room air, or 100% O(2)), and storage temperature (4 degrees, 10 degrees, or 15 degrees C). Modified Euro-Collins solution served as the base preservation solution for all experiments, with a preservation duration of 4 to 6 hours. Arterial oxygenation (PaO(2), mm Hg), pulmonary vascular resistance (mm Hg/mL per minute), recipient survival (%), and graft neutrophil infiltration (DeltaAbs(460 nm)/min) were measured 30 minutes after transplantation of the left lung and exclusion of the right lung from the circulation. All tested conditions significantly affect post-LTX vascular homeostasis. Inflation at 10 mm Hg pressure preserved lungs significantly better than did other pressures. There was a tendency for room air to improve all measured variables compared with 100% N(2) or 100% O(2) and a significant improvement in recipient survival with room air storage. Of the 3 storage temperatures investigated, 10 degrees C storage provided the best preservation in terms of PaO(2), graft neutrophil infiltration, and survival.
We conclude that storage at 10 degrees C, 10 mm Hg inflation pressure, with room air establishes optimal lung storage conditions with Euro-Collins solution in this rat LTX model. These data suggest that these conditions should be used to evaluate new and potentially improved preservation strategies.
肺保存会破坏正常的血管内环境稳定,导致通透性增加、血管收缩以及中性粒细胞的内皮细胞黏附。我们推测,最能维持肺移植后血管内环境稳定的保存策略可能因器官和物种而异。由于大鼠肺移植模型在开发改进的肺保存策略方面具有潜在用途,我们试图确定大鼠肺移植物保存的最佳物理条件。
测试的条件包括获取时的充气压力(0、10或20毫米汞柱)、充气气体成分(100%氮气、室内空气或100%氧气)以及保存温度(4℃、10℃或15℃)。改良的欧洲柯林斯溶液用作所有实验的基础保存液,保存时间为4至6小时。在移植左肺并将右肺从循环中排除30分钟后,测量动脉氧合(动脉血氧分压,毫米汞柱)、肺血管阻力(毫米汞柱/毫升每分钟)、受体存活率(%)以及移植物中性粒细胞浸润(460纳米处的吸光度变化/分钟)。所有测试条件均显著影响肺移植后的血管内环境稳定。10毫米汞柱压力下充气保存的肺明显优于其他压力条件下的肺。与100%氮气或100%氧气相比,室内空气有改善所有测量变量的趋势,且室内空气保存可显著提高受体存活率。在所研究的3个保存温度中,10℃保存就动脉血氧分压、移植物中性粒细胞浸润和存活率而言提供了最佳保存效果。
我们得出结论,在该大鼠肺移植模型中,使用欧洲柯林斯溶液,于10℃、10毫米汞柱充气压力及室内空气条件下保存可建立最佳的肺保存条件。这些数据表明,应采用这些条件来评估新的及可能改进的保存策略。