Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H
Department of Pathology, Fukui Medical University, Japan.
Biochemistry. 1999 Nov 23;38(47):15514-21. doi: 10.1021/bi991161m.
We analyzed the interaction of two kinds of amyloid beta-peptides (A beta), i.e., A beta(1-42) and A beta(1-40), in the kinetics of beta-amyloid fibril (fA beta) formation in vitro, based on a nucleation-dependent polymerization model using fluorescence spectroscopy with thioflavin T. When 25 microM A beta(1-42) was incubated with increasing concentrations of amyloidogenic A beta(1-40), the time to proceed to equilibrium was extended dose-dependently. A similar inhibitory effect was observed when 45 microM A beta(1-40) was incubated with increasing concentrations of A beta(1-42). On the other hand, when 50 microM of nonamyloidogenic A beta(1-40) was incubated with A beta(1-42) at a molar ratio of 10:1 or 5:1, A beta(1-42) initiated fA beta formation from A beta(1-40). The lag time of the reaction shortened in a concentration-dependent manner, with A beta(1-42). We next examined the seeding effect of fA beta formed from A beta(1-42) (fA beta(1-42)) on nonamyloidogenic A beta(1-40). When 50 microM of nonamyloidogenic A beta(1-40) was incubated with 10 or 20 microg/mL (2.2 or 4.4 microM) of fA beta(1-42), the fluorescence showed a sigmoidal increase. The lag time of the reaction was shortened by fA beta(1-42) in a concentration-dependent manner. However, the time to proceed to equilibrium was much longer than when an equal concentration of fA beta formed from A beta(1-40) (fA beta(1-40)) was added to A beta(1-40). The fluorescence increased hyperbolically without a lag phase when 25 microM A beta(1-42) was incubated with 10 or 20 microg/mL (2.3 or 4.6 microM) of fA beta(1-40), and proceeded to equilibrium more rapidly than without fA beta(1-40). An electron microscopic study indicated that the morphology of fA beta formed is governed by the major component of fresh A beta peptides in the reaction mixture, not by the morphology of preexisting fibrils. These results may indicate the central role of A beta(1-42) for fA beta deposition in vivo, among the different coexisting A beta species.
我们基于使用硫黄素 T 的荧光光谱法的成核依赖性聚合模型,分析了两种淀粉样β肽(Aβ),即 Aβ(1-42) 和 Aβ(1-40) 在体外β淀粉样纤维(fAβ)形成动力学中的相互作用。当将 25μM 的 Aβ(1-42) 与浓度不断增加的淀粉样生成性 Aβ(1-40) 一起孵育时,达到平衡的时间呈剂量依赖性延长。当将 45μM 的 Aβ(1-40) 与浓度不断增加的 Aβ(1-42) 一起孵育时,观察到了类似的抑制作用。另一方面,当将 50μM 的非淀粉样生成性 Aβ(1-40) 与 Aβ(1-42) 以 10:1 或 5:1 的摩尔比一起孵育时,Aβ(1-42) 引发了 Aβ(1-40) 的 fAβ 形成。反应的延迟时间以浓度依赖性方式缩短,与 Aβ(1-42) 有关。接下来,我们研究了由 Aβ(1-42) 形成的 fAβ(fAβ(1-42))对非淀粉样生成性 Aβ(1-40) 的种子效应。当将 50μM 的非淀粉样生成性 Aβ(1-40) 与 10 或 20μg/mL(2.2 或 4.4μM)的 fAβ(1-42) 一起孵育时,荧光呈 S 形增加。fAβ(1-42) 以浓度依赖性方式缩短了反应的延迟时间。然而,达到平衡的时间比将等浓度的由 Aβ(1-40) 形成的 fAβ(fAβ(1-40))添加到 Aβ(1-40) 时要长得多。当将 25μM 的 Aβ(1-42) 与 10 或 20μg/mL(2.3 或 4.6μM)的 fAβ(1-40) 一起孵育时,荧光呈双曲线增加且无延迟期,并比不添加 fAβ(1-40) 时更快地达到平衡。电子显微镜研究表明,形成的 fAβ 的形态由反应混合物中新鲜 Aβ 肽的主要成分决定,而不是由预先存在的纤维的形态决定。这些结果可能表明在体内不同共存的 Aβ 物种中,Aβ(1-42) 在 fAβ 沉积中起核心作用。