Brockmeier D
Klinische Pharmakologie, Klinikum der Justus-Liebig-Universität, Giessen, Germany.
Int J Clin Pharmacol Ther. 1999 Nov;37(11):555-61.
In 1958, F.H. Dost [1958] defined the mean life-span ("mittlere Lebensdauer") of a total number of N molecules as the arithmetic mean of all times "z(i)" of any one of the N molecules residing in a pharmacokinetic system. This pharmacokinetic characteristic did not attract special interest for several years. Almost simultaneously Yamaoka et al. [1978], Cutler [1978], van Rossum [1978], Benet and Galeazzi [1979], and von Hattingberg and Brockmeier [1979] recommended the mean residence time (MRT) or mean time (MT) as a useful summarizing characteristic for complex pharmacokinetic systems. One of the most useful properties of the statistical analysis (also called "moment analysis" or "statistical moment analysis") of concentration-time data and in vitro dissolution profiles using moments is the additivity of mean times [von Hattingberg and Brockmeier 1978, 1979]. The very simple and compelling logic of additivity can be explained by the following example: considering an oral administration of a readily available dosage form, the distribution of each individual molecule within the body and the elimination from the body must be preceded by absorption of this molecule, which is trivial. However, as a consequence, the total transit time of an individual molecule through this system is the sum of its time up to absorption into the central circulation z(i).abs and the time the molecule spends in any part of the volume the molecule can reach z(i).vss. Therefore, the total mean time of all drug molecules available is the sum of the mean absorption time MT(abs) and the mean time in the steady-state volume of distribution MTvss. It is obvious that we can estimate the two components of the total mean time, i.e. MTabs and MTvss, by an appropriate experimental setting giving the drug once intravenously and determining MTvss and once giving the drug as an oral solution and deducing MTabs = MTtotal - MTvss. Because of this very useful property of the statistical analysis of concentration-time data by moments, this approach has been entitled "component analysis" [von Hattingberg et al. 1984].
1958年,F.H. 多斯特 [1958] 将N个分子的总平均寿命(“mittlere Lebensdauer”)定义为N个分子中任何一个分子在药代动力学系统中停留的所有时间 “z(i)” 的算术平均值。这个药代动力学特征在几年内并未引起特别关注。几乎与此同时,山冈等人 [1978]、卡特勒 [1978]、范罗苏姆 [1978]、贝内特和加利亚齐 [1979] 以及冯·哈廷贝格和布罗克迈尔 [1979] 推荐将平均驻留时间(MRT)或平均时间(MT)作为复杂药代动力学系统的一个有用的汇总特征。使用矩对浓度 - 时间数据和体外溶出曲线进行统计分析(也称为“矩分析”或“统计矩分析”)最有用的特性之一是平均时间的可加性 [冯·哈廷贝格和布罗克迈尔1978, 1979]。可加性这种非常简单且令人信服的逻辑可以通过以下示例来解释:考虑口服一种速释剂型,体内每个单个分子的分布以及从体内的消除都必须先经过该分子的吸收,这是显而易见的。然而,结果是,单个分子通过该系统的总转运时间是其进入中心循环的吸收时间z(i).abs与其在分子可到达的任何体积部分所花费时间z(i).vss的总和。因此,所有可用药物分子的总平均时间是平均吸收时间MT(abs)与稳态分布体积中的平均时间MTvss之和。很明显,我们可以通过适当的实验设置来估计总平均时间的两个组成部分,即MTabs和MTvss,方法是一次静脉注射给药并确定MTvss,一次口服给药并推导MTabs = MTtotal - MTvss。由于通过矩对浓度 - 时间数据进行统计分析具有这种非常有用的特性,这种方法被称为“组分分析” [冯·哈廷贝格等人1984]。