Suppr超能文献

图像识别:视觉分组、识别与学习。

Image recognition: visual grouping, recognition, and learning.

作者信息

Buhmann J M, Malik J, Perona P

机构信息

Institut für Informatik, Universität Bonn, 53117 Bonn, Germany.

出版信息

Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14203-4. doi: 10.1073/pnas.96.25.14203.

Abstract

Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.

摘要

视觉从图像中提取有用信息。重建我们周围环境的三维结构并识别其中的物体是我们视觉系统最重要的功能之一。计算机视觉研究人员研究视觉的计算原理,旨在设计能够重现这些功能的算法。视觉是困难的:根据光照和视角的不同,相同的场景可能会产生非常不同的图像。通常,原则上必须分析天文数字般的假设才能推断出正确的场景描述。此外,根据图像处理任务的不同,图像信息可能会在不同的空间和逻辑分辨率级别上被提取。对世界的了解使视觉系统能够限制模糊性的数量,并大大简化视觉计算。我们将讨论格式塔分组规则如何捕捉世界的简单属性,视觉系统如何学习和组织用于识别的物体模型,以及如何控制视觉系统计算的描述的复杂性。

相似文献

1
Image recognition: visual grouping, recognition, and learning.
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14203-4. doi: 10.1073/pnas.96.25.14203.
2
Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
Artif Intell Med. 2018 Jan;84:64-78. doi: 10.1016/j.artmed.2017.11.001. Epub 2017 Nov 10.
4
CONFIGR: a vision-based model for long-range figure completion.
Neural Netw. 2007 Dec;20(10):1109-31. doi: 10.1016/j.neunet.2007.10.002. Epub 2007 Oct 12.
5
Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
Artif Organs. 2015 Jul;39(7):E102-13. doi: 10.1111/aor.12476. Epub 2015 Apr 20.
6
Opposite modulation of high- and low-level visual aftereffects by perceptual grouping.
Curr Biol. 2012 Jun 5;22(11):1040-5. doi: 10.1016/j.cub.2012.04.026. Epub 2012 May 10.
7
The collaboration of grouping laws in vision.
J Physiol Paris. 2012 Sep-Dec;106(5-6):266-83. doi: 10.1016/j.jphysparis.2011.12.002. Epub 2012 Feb 16.
8
Computational gestalts and perception thresholds.
J Physiol Paris. 2003 Mar-May;97(2-3):311-24. doi: 10.1016/j.jphysparis.2003.09.006.
9
Recognition invariance obtained by extended and invariant features.
Neural Netw. 2004 Jun-Jul;17(5-6):833-48. doi: 10.1016/j.neunet.2004.01.006.

引用本文的文献

1
Use of photographs illustrating ABCDE criteria in skin self-examination.
Arch Dermatol. 2009 Mar;145(3):332-3. doi: 10.1001/archdermatol.2008.604.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
2
Representing moving images with layers.
IEEE Trans Image Process. 1994;3(5):625-38. doi: 10.1109/83.334981.
3
Low-dimensional procedure for the characterization of human faces.
J Opt Soc Am A. 1987 Mar;4(3):519-24. doi: 10.1364/josaa.4.000519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验