Jiménez-Chillarón J C, Newgard C B, Gómez-Foix A M
Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain.
FASEB J. 1999 Dec;13(15):2153-60. doi: 10.1096/fasebj.13.15.2153.
In non-insulin-dependent diabetes mellitus, insulin-stimulated glucose uptake is impaired in muscle, contributing in a major way to development of hyperglycemia. We previously showed that expression of the glucose phosphorylating enzyme glucokinase (GK) in cultured human myocytes improved glucose storage and disposal, suggesting that GK delivery to muscle in situ could potentially enhance glucose clearance. Here we have tested this idea directly by intramuscular delivery of an adenovirus containing the liver GK cDNA (AdCMV-GKL) into one hind limb. We injected an adenovirus containing the beta-galactosidase gene (AdCMV-lacZ) into the hind limb of newborn rats. beta-Galactosidase activity was localized in muscle for as long as 1 month after delivery, with a large percentage of fibers staining positive in the gastrocnemius. Using the same approach with AdCMV-GKL, GK protein content was increased from zero to 50-400% of the GK in normal liver sample, and total glucose phosphorylating activity was increased in GK-expressing muscles relative to the counterpart uninfected muscle. Expression of GK in muscle improved glucose tolerance rather than changing basal glycemic control. Glucose levels were reduced by approximately 35% 10 min after administration of a glucose bolus to fed animals treated with AdCMV-GKL relative to AdCMV-lacZ-treated controls. The enhanced rate of glucose clearance was reflected in increases in muscle 2-deoxy glucose uptake and blood lactate levels. We conclude that restricted expression of GK in muscle leads to an enhanced capacity for muscle glucose disposal and whole body glucose tolerance under conditions of maximal glucose-insulin stimulation, suggesting that under these conditions glucose phosphorylation becomes rate-limiting. Our findings also show that gene delivery to a fraction of the whole body is sufficient to improve glucose disposal, providing a rationale for the development of new therapeutic strategies for treatment of diabetes.-Jiménez-Chillarón, J. C., Newgard, C. B., Gómez-Foix, A. M. Increased glucose disposal induced by adenovirus-mediated transfer of glucokinase to skeletal muscle in vivo.
在非胰岛素依赖型糖尿病中,胰岛素刺激的肌肉葡萄糖摄取受损,这在很大程度上导致了高血糖的发生。我们之前表明,培养的人肌细胞中葡萄糖磷酸化酶葡萄糖激酶(GK)的表达改善了葡萄糖的储存和处理,这表明将GK原位递送至肌肉可能会增强葡萄糖清除。在这里,我们通过将含有肝脏GK cDNA的腺病毒(AdCMV - GKL)肌肉内递送至一只后肢直接测试了这一想法。我们将含有β - 半乳糖苷酶基因的腺病毒(AdCMV - lacZ)注射到新生大鼠的后肢。β - 半乳糖苷酶活性在递送后长达1个月定位在肌肉中,腓肠肌中有很大比例的纤维染色呈阳性。使用相同的方法用AdCMV - GKL处理,GK蛋白含量从零增加到正常肝脏样品中GK的50 - 400%,并且相对于未感染的对应肌肉,表达GK的肌肉中总葡萄糖磷酸化活性增加。肌肉中GK的表达改善了葡萄糖耐量,而不是改变基础血糖控制。相对于用AdCMV - lacZ处理的对照,向用AdCMV - GKL处理的进食动物给予葡萄糖推注后10分钟,葡萄糖水平降低了约35%。葡萄糖清除率的提高反映在肌肉2 - 脱氧葡萄糖摄取和血乳酸水平的增加上。我们得出结论,在最大葡萄糖 - 胰岛素刺激条件下,肌肉中GK的限制性表达导致肌肉葡萄糖处理能力增强和全身葡萄糖耐量提高,这表明在这些条件下葡萄糖磷酸化成为限速步骤。我们的研究结果还表明,将基因递送至全身的一部分足以改善葡萄糖处理,为开发治疗糖尿病的新治疗策略提供了理论依据。 - 希门尼斯 - 奇拉龙,J.C.,纽加德,C.B.,戈麦斯 - 福伊克斯,A.M. 腺病毒介导的葡萄糖激酶转移至体内骨骼肌诱导葡萄糖处理增加。