Barthel T K, Walker G C
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Biol Chem. 1999 Dec 17;274(51):36670-8. doi: 10.1074/jbc.274.51.36670.
Preparations of Escherichia coli DnaK from our lab as well as preparations of DnaK and other HSP70 proteins from several major labs in the field produce a stoichiometric initial burst of [alpha-(32)P]ADP when incubated with [alpha-(32)P]ATP and contain an ADP kinase activity. We determined that the initial burst activity results from the transfer of gamma-phosphate from the radiolabeled substrate [alpha-(32)P]ATP to unlabeled ADP bound by the DnaK and is the same activity that results in ADP phosphorylation. The purification of DnaK from E. coli cells that carry a disrupted ndk gene, ndk::km, results in preparations with greatly reduced ADP kinase activities compared with preparations of DnaK purified from ndk(+) cells. The reduction in the amount of ADP kinase activity in preparations of DnaK purified from ndk::km cells shows that nucleoside-diphosphate kinase (NDP kinase) is responsible for most of the ADP kinase activity present in DnaK preparations isolated from ndk(+) cells. The remaining ADP kinase activity in preparations from ndk::km cells, which varies between preparations, is also a property of NDP kinase, which is most likely expressed because of a low frequency reversion of the disrupted ndk gene. A weak, but measurable physical interaction exists between DnaK and NDP kinase and may be at least partially responsible for the co-purification of NDP kinase with DnaK. The presence of contaminating NDP kinase can explain the range of k(cat) values reported for the ATPase activity of DnaK as well as recent reports of initial burst kinetics by DnaK (Banecki, B., and Zylicz, M. (1996) J. Biol. Chem. 271, 6137-6143) and an ADP-ATP exchange activity of DnaK (Hiromura, M., Yano, M., Mori, H., Inoue, M., and Kido, H. (1998) J. Biol. Chem. 273, 5435-5438).
我们实验室制备的大肠杆菌DnaK以及该领域几个主要实验室制备的DnaK和其他HSP70蛋白,在与[α-(32)P]ATP一起孵育时会产生化学计量的初始[α-(32)P]ADP爆发,并具有ADP激酶活性。我们确定初始爆发活性是由于γ-磷酸从放射性标记底物[α-(32)P]ATP转移到DnaK结合的未标记ADP上,并且与导致ADP磷酸化的活性相同。从携带ndk基因破坏的大肠杆菌细胞(ndk::km)中纯化DnaK,与从ndk(+)细胞中纯化的DnaK制剂相比,得到的制剂中ADP激酶活性大大降低。从ndk::km细胞中纯化的DnaK制剂中ADP激酶活性量的减少表明,核苷二磷酸激酶(NDP激酶)负责从ndk(+)细胞分离的DnaK制剂中存在的大部分ADP激酶活性。来自ndk::km细胞的制剂中剩余的ADP激酶活性在不同制剂之间有所不同,这也是NDP激酶的特性,这很可能是由于ndk基因破坏的低频回复而表达的。DnaK和NDP激酶之间存在微弱但可测量的物理相互作用,这可能至少部分解释了NDP激酶与DnaK的共纯化。污染性NDP激酶的存在可以解释报道的DnaK ATPase活性的k(cat)值范围,以及最近关于DnaK初始爆发动力学的报道(Banecki,B.和Zylicz,M.(1996)J. Biol. Chem. 271,6137 - 6143)以及DnaK的ADP - ATP交换活性(Hiromura,M.,Yano,M.,Mori,H.,Inoue,M.和Kido,H.(1998)J. Biol. Chem. 273,5435 - 5438)。