Suppr超能文献

Characterization of newly identified four isoforms for a putative cytosolic protein tyrosine phosphatase PTP36.

作者信息

Aoyama K, Matsuda T, Aoki N

机构信息

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

出版信息

Biochem Biophys Res Commun. 1999 Dec 20;266(2):523-31. doi: 10.1006/bbrc.1999.1845.

Abstract

In the course of determining the expression profiles of protein tyrosine phosphatases in lactating mammary gland, we found the expression of an isoform for a putative cytosolic and cytoskeleton-associated protein tyrosine phosphatase PTP36. Further detailed RT-PCR and Northern blot analyses revealed the expression of several isoforms for PTP36 in a tissue-dependent manner. We have cloned the cDNAs encoding four truncated isoforms for PTP36 and designated PTP36-A, -B, -C, and -D, respectively. PTP36-A and -C had new sequences generated due to frameshift, whereas PTP36-B and -D were in-frame variants. Gly- and Glu-rich domains and a putative PTP domain were missing from PTP36-A, but the band 4.1 domain remained. PTP36-B retained the band 4.1 and PTP domains but lacked Pro-, Gly- and Glu-rich domains. Most domain structures were lacking in PTP36-C and -D. Interestingly, PTP36-C contained an incomplete band 4.1 domain, but the newly created sequence exhibited high homology to human nebulette, which was also suggested to associate with cytoskeletons. When transiently expressed in COS7 and HEK293 cells, not only the wild type but also all the isoforms were recovered in Triton X-100-insoluble cytoskeleton-associated fractions and this distribution was not affected by mechanical cell detachment and treatment with a kinase inhibitor staurosporine. Such cellular distribution of PTP36 was also observed in stable COS7 clones. Further studies using deletion mutants suggested that the first 30 amino acids as well as the band 4.1 domain of PTP36 were involved in association with Triton X-100 insoluble cytoskeletons. Tissue-dependent expression and deletion in domain structures might reflect the biological significance of the isoforms for PTP36 in certain physiological conditions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验