Suppr超能文献

Molecular chaperones in cilia and flagella: implications for protein turnover.

作者信息

Stephens R E, Lemieux N A

机构信息

Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

Cell Motil Cytoskeleton. 1999 Dec;44(4):274-83. doi: 10.1002/(SICI)1097-0169(199912)44:4<274::AID-CM5>3.0.CO;2-O.

Abstract

The mechanisms of protein incorporation and turnover in 9+2 ciliary axonemes are not known. Previous reports of an HSP70-related protein, first in Chlamydomonas flagella and then in sea urchin embryonic cilia, suggested a potential role in protein transport or incorporation. The present study further explores this and other chaperones in axonemes from a representative range of organisms. Two-dimensional gel electrophoresis proved identity between the sea urchin ciliary 78 kDa HSP and a constitutive cytoplasmic HSP70 cognate (pI = 5.71). When isolated flagella from mature sea urchin sperm were analyzed, the same total amount and distribution of 78 kDa protein as in cilia were found. Antigens of similar size were detected in ctenophore comb plate, molluscan gill, and rabbit tracheal cilia. Absent from sea urchin sperm flagella, TCP-1alpha was detected in sea urchin embryonic and rabbit tracheal cilia; the latter also contained HSP90, detected by two distinct antibodies. Tracheal cilia were shown to undergo axonemal protein turnover while tracheal cells mainly synthesized ciliary proteins. TCP-1alpha progressively appeared in regenerating embryonic cilia only as their growth slowed, suggesting a regulatory role in incorporation or turnover. These results demonstrate that chaperones are widely distributed ciliary and flagellar components, potentially related to axonemal protein dynamics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验