Suppr超能文献

Using computational auditory models to predict simultaneous masking data: model comparison.

作者信息

Huettel L G, Collins L M

机构信息

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.

出版信息

IEEE Trans Biomed Eng. 1999 Dec;46(12):1432-40. doi: 10.1109/10.804571.

Abstract

In order to develop improved remediation techniques for hearing impairment, auditory researchers must gain a greater understanding of the relation between the psychophysics of hearing and the underlying physiology. One approach to studying the auditory system has been to design computational auditory models that predict neurophysiological data such as neural firing rates [15], [1]. To link these physiologically-based models to psychophysics, theoretical bounds on detection performance have been derived using signal detection theory to analyze the simulated data for various psychophysical tasks [20]. Previous efforts, including our own recent work using the Auditory Image Model, have demonstrated the validity of this type of analysis; however, theoretical predictions often continue to exceed experimentally-measured performance [9], [21]. In this paper, we compare predictions of detection performance across several computational auditory models. We also reconcile some of the previously observed discrepancies by incorporating appropriate signal uncertainty into the optimal detector.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验