Mizoguchi H, Narita M, Oji D E, Suganuma C, Nagase H, Sora I, Uhl G R, Cheng E Y, Tseng L F
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA.
Neuroscience. 1999;94(1):203-7. doi: 10.1016/s0306-4522(99)00298-5.
There appear to be different relationships between mu-opioid receptor densities and the acute and neuroadaptive mu-opioid agonist-induced responses of the multiple opioid neuronal systems, including important pons/medulla circuits. The recent success in creating mu-opioid receptor knockout mice allows studies of mu-opioid agonist-induced pharmacological and physiological effects in animals that express no, one or two copies of the mu-opioid receptor gene. We now report that the binding of mu-opioid receptor ligand, [3H][D-Ala2,NHPhe4,Gly-ol]enkephalin to membrane preparations of the pons/medulla was reduced by half in heterozygous mu-opioid receptor knockout mice and eliminated in homozygous mu-opioid receptor knockout mice. The endogenous mu-opioid agonist peptides endomorphin-1 and -2 activate G-proteins in the pons/medulla from wild-type mice in a concentration-dependent fashion, as assessed using [35S]guanosine-5'-o-(3-thio)triphosphate binding. This stimulation was reduced to half of the wild-type levels in heterozygous mice and eliminated in homozygous knockout mice. The intracerebroventricular injection of either endomorphin-1 or endomorphin-2 produced marked antinociception in the hot-plate and tail-flick tests in wild-type mice. These antinociceptive actions were significantly reduced in heterozygous mu-opioid receptor knockout mice, and virtually abolished in homozygous knockout mice. The mu-opioid receptors are the principal molecular targets for endomorphin-induced G-protein activation in the pons/medulla and the antinociception caused by the intracerebroventricular administration of mu-opioid agonists. These data support the notion that there are limited physiological mu-opioid receptor reserves for inducing G-protein activation in the pons/medulla and for the nociceptive modulation induced by the central administration of endomorphin-1 and -2.
μ-阿片受体密度与多种阿片神经元系统(包括重要的脑桥/延髓回路)的急性和神经适应性μ-阿片激动剂诱导反应之间似乎存在不同的关系。最近成功培育出μ-阿片受体基因敲除小鼠,这使得在不表达、表达一个或两个拷贝μ-阿片受体基因的动物中研究μ-阿片激动剂诱导的药理和生理效应成为可能。我们现在报告,在杂合子μ-阿片受体基因敲除小鼠中,μ-阿片受体配体[3H][D-Ala2,NHPhe4,Gly-ol]脑啡肽与脑桥/延髓膜制剂的结合减少了一半,而在纯合子μ-阿片受体基因敲除小鼠中则完全消除。内源性μ-阿片激动剂肽内吗啡肽-1和-2以浓度依赖的方式激活野生型小鼠脑桥/延髓中的G蛋白,这是通过使用[35S]鸟苷-5'-O-(3-硫代)三磷酸结合来评估的。这种刺激在杂合子小鼠中降至野生型水平的一半,而在纯合子基因敲除小鼠中则完全消除。在热板和甩尾试验中,向野生型小鼠脑室内注射内吗啡肽-1或内吗啡肽-2均可产生明显的镇痛作用。这些镇痛作用在杂合子μ-阿片受体基因敲除小鼠中显著降低,而在纯合子基因敲除小鼠中几乎完全消失。μ-阿片受体是内吗啡肽诱导脑桥/延髓中G蛋白激活以及脑室内给予μ-阿片激动剂引起镇痛作用的主要分子靶点。这些数据支持这样一种观点,即在脑桥/延髓中诱导G蛋白激活以及由内吗啡肽-1和-2的中枢给药诱导的伤害性调制方面,生理上的μ-阿片受体储备是有限的。