Suppr超能文献

能够检测优先污染物酚类的新型细菌调节蛋白的产生。

Generation of novel bacterial regulatory proteins that detect priority pollutant phenols.

作者信息

Wise A A, Kuske C R

机构信息

Environmental Molecular Biology Group, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

Appl Environ Microbiol. 2000 Jan;66(1):163-9. doi: 10.1128/AEM.66.1.163-169.2000.

Abstract

The genetic systems of bacteria that have the ability to use organic pollutants as carbon and energy sources can be adapted to create bacterial biosensors for the detection of industrial pollution. The creation of bacterial biosensors is hampered by a lack of information about the genetic systems that control production of bacterial enzymes that metabolize pollutants. We have attempted to overcome this problem through modification of DmpR, a regulatory protein for the phenol degradation pathway of Pseudomonas sp. strain CF600. The phenol detection capacity of DmpR was altered by using mutagenic PCR targeted to the DmpR sensor domain. DmpR mutants were identified that both increased sensitivity to the phenolic effectors of wild-type DmpR and increased the range of molecules detected. The phenol detection characteristics of seven DmpR mutants were demonstrated through their ability to activate transcription of a lacZ reporter gene. Effectors of the DmpR derivatives included phenol, 2-chlorophenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-nitrophenol.

摘要

能够将有机污染物用作碳源和能源的细菌遗传系统可加以改造,以创建用于检测工业污染的细菌生物传感器。由于缺乏有关控制代谢污染物的细菌酶产生的遗传系统的信息,细菌生物传感器的创建受到了阻碍。我们试图通过改造DmpR来克服这一问题,DmpR是假单胞菌属CF600菌株苯酚降解途径的一种调节蛋白。通过针对DmpR传感器结构域的诱变PCR改变了DmpR的苯酚检测能力。鉴定出的DmpR突变体既提高了对野生型DmpR酚类效应物的敏感性,又扩大了检测分子的范围。通过七个DmpR突变体激活lacZ报告基因转录的能力,证明了它们的苯酚检测特性。DmpR衍生物的效应物包括苯酚、2-氯苯酚、2,4-二氯苯酚、4-氯-3-甲基苯酚、2,4-二甲基苯酚、2-硝基苯酚和4-硝基苯酚。

相似文献

1
Generation of novel bacterial regulatory proteins that detect priority pollutant phenols.
Appl Environ Microbiol. 2000 Jan;66(1):163-9. doi: 10.1128/AEM.66.1.163-169.2000.
3
Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils.
Appl Environ Microbiol. 2001 Jan;67(1):162-71. doi: 10.1128/AEM.67.1.162-171.2001.
5
A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida.
J Biotechnol. 2003 Aug 15;103(3):227-36. doi: 10.1016/s0168-1656(03)00122-6.
9
Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR.
Mol Microbiol. 1998 Apr;28(1):131-41. doi: 10.1046/j.1365-2958.1998.00780.x.

引用本文的文献

1
Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors.
ACS Synth Biol. 2025 Jan 17;14(1):72-86. doi: 10.1021/acssynbio.4c00689. Epub 2024 Dec 22.
2
Highly multiplexed design of an allosteric transcription factor to sense new ligands.
Nat Commun. 2024 Nov 19;15(1):10001. doi: 10.1038/s41467-024-54260-8.
3
Highly multiplexed design of an allosteric transcription factor to sense novel ligands.
bioRxiv. 2024 Apr 21:2024.03.07.583947. doi: 10.1101/2024.03.07.583947.
4
Evolution of to degrade halogenated aromatic compounds involves changes in pathway regulation and enzyme specificity.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0210423. doi: 10.1128/aem.02104-23. Epub 2024 Jan 11.
5
A Microbial Electrochemical Technology to Detect and Degrade Organophosphate Pesticides.
ACS Cent Sci. 2021 Oct 27;7(10):1718-1727. doi: 10.1021/acscentsci.1c00931. Epub 2021 Sep 21.
6
Tetrameric architecture of an active phenol-bound form of the AAA transcriptional regulator DmpR.
Nat Commun. 2020 Jun 1;11(1):2728. doi: 10.1038/s41467-020-16562-5.
7
Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications.
Sens Actuators B Chem. 2018 Feb;255:2657-2689. doi: 10.1016/j.snb.2017.09.078. Epub 2017 Sep 18.
8
Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives.
World J Microbiol Biotechnol. 2017 Sep 6;33(9):174. doi: 10.1007/s11274-017-2339-x.
9
Bacterial Biosensors for Measuring Availability of Environmental Pollutants.
Sensors (Basel). 2008 Jul 10;8(7):4062-4080. doi: 10.3390/s8074062.
10
Tailor-made transcriptional biosensors for optimizing microbial cell factories.
J Ind Microbiol Biotechnol. 2017 May;44(4-5):623-645. doi: 10.1007/s10295-016-1862-3. Epub 2016 Nov 11.

本文引用的文献

1
Kinetics and response of a Pseudomonas fuorescens HK44 biosensor.
Biotechnol Bioeng. 1997 Jun 5;54(5):491-502. doi: 10.1002/(SICI)1097-0290(19970605)54:5<491::AID-BIT8>3.0.CO;2-9.
3
Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR.
Mol Microbiol. 1998 Apr;28(1):131-41. doi: 10.1046/j.1365-2958.1998.00780.x.
4
Development and testing of a bacterial biosensor for toluene-based environmental contaminants.
Appl Environ Microbiol. 1998 Mar;64(3):1006-12. doi: 10.1128/AEM.64.3.1006-1012.1998.
7
Cell-density-dependent sensitivity of a mer-lux bioassay.
Appl Environ Microbiol. 1997 Aug;63(8):3291-3. doi: 10.1128/aem.63.8.3291-3293.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验