Lamb D C, Kelly D E, Manning N J, Kaderbhai M A, Kelly S L
Institute of Biological Sciences, University of Wales Aberystwyth, UK.
FEBS Lett. 1999 Dec 3;462(3):283-8. doi: 10.1016/s0014-5793(99)01548-3.
The widely accepted catalytic cycle of cytochromes P450 (CYP) involves the electron transfer from NADPH cytochrome P450 reductase (CPR), with a potential for second electron donation from the microsomal cytochrome b5/NADH cytochrome b5 reductase system. The latter system only supported CYP reactions inefficiently. Using purified proteins including Candida albicans CYP51 and yeast NADPH cytochrome P450 reductase, cytochrome b5 and NADH cytochrome b5 reductase, we show here that fungal CYP51 mediated sterol 14alpha-demethylation can be wholly and efficiently supported by the cytochrome b5/NADH cytochrome b5 reductase electron transport system. This alternative catalytic cycle, where both the first and second electrons were donated via the NADH cytochrome b5 electron transport system, can account for the continued ergosterol production seen in yeast strains containing a disruption of the gene encoding CPR.
细胞色素P450(CYP)广泛接受的催化循环涉及从NADPH细胞色素P450还原酶(CPR)进行电子转移,微粒体细胞色素b5/NADH细胞色素b5还原酶系统有可能进行第二次电子供体。后一种系统仅低效地支持CYP反应。使用包括白色念珠菌CYP51和酵母NADPH细胞色素P450还原酶、细胞色素b5和NADH细胞色素b5还原酶在内的纯化蛋白,我们在此表明,真菌CYP51介导的甾醇14α-去甲基化可以由细胞色素b5/NADH细胞色素b5还原酶电子传输系统完全且有效地支持。这种替代催化循环中,第一个和第二个电子均通过NADH细胞色素b5电子传输系统供体,这可以解释在编码CPR的基因被破坏的酵母菌株中持续产生麦角固醇的现象。