Suppr超能文献

南大洋中溶解有机物和铁对细菌生长的限制

Limitation of bacterial growth by dissolved organic matter and iron in the Southern ocean.

作者信息

Church M J, Hutchins D A, Ducklow H W

机构信息

School of Marine Science, The College of William and Mary, Gloucester Point, Virginia 23062-1346, USA.

出版信息

Appl Environ Microbiol. 2000 Feb;66(2):455-66. doi: 10.1128/AEM.66.2.455-466.2000.

Abstract

The importance of resource limitation in controlling bacterial growth in the high-nutrient, low-chlorophyll (HNLC) region of the Southern Ocean was experimentally determined during February and March 1998. Organic- and inorganic-nutrient enrichment experiments were performed between 42 degrees S and 55 degrees S along 141 degrees E. Bacterial abundance, mean cell volume, and [(3)H]thymidine and [(3)H]leucine incorporation were measured during 4- to 5-day incubations. Bacterial biomass, production, and rates of growth all responded to organic enrichments in three of the four experiments. These results indicate that bacterial growth was constrained primarily by the availability of dissolved organic matter. Bacterial growth in the subtropical front, subantarctic zone, and subantarctic front responded most favorably to additions of dissolved free amino acids or glucose plus ammonium. Bacterial growth in these regions may be limited by input of both organic matter and reduced nitrogen. Unlike similar experimental results in other HNLC regions (subarctic and equatorial Pacific), growth stimulation of bacteria in the Southern Ocean resulted in significant biomass accumulation, apparently by stimulating bacterial growth in excess of removal processes. Bacterial growth was relatively unchanged by additions of iron alone; however, additions of glucose plus iron resulted in substantial increases in rates of bacterial growth and biomass accumulation. These results imply that bacterial growth efficiency and nitrogen utilization may be partly constrained by iron availability in the HNLC Southern Ocean.

摘要

1998年2月至3月期间,通过实验确定了资源限制在控制南大洋高营养、低叶绿素(HNLC)区域细菌生长中的重要性。在南纬42度至55度、东经141度沿线进行了有机和无机营养物富集实验。在4至5天的培养期间,测量了细菌丰度、平均细胞体积以及[³H]胸腺嘧啶核苷和[³H]亮氨酸掺入量。在四个实验中的三个实验中,细菌生物量、产量和生长速率均对有机富集有反应。这些结果表明,细菌生长主要受溶解有机物可用性的限制。亚热带锋、亚南极区和亚南极锋的细菌生长对添加溶解游离氨基酸或葡萄糖加铵的反应最为有利。这些区域的细菌生长可能受到有机物和还原态氮输入的限制。与其他HNLC区域(亚北极和赤道太平洋)的类似实验结果不同,南大洋中细菌生长的刺激导致了显著的生物量积累,显然是通过刺激细菌生长超过去除过程实现的。单独添加铁对细菌生长影响相对较小;然而,添加葡萄糖加铁导致细菌生长速率和生物量积累大幅增加。这些结果表明,在南大洋HNLC区域,细菌生长效率和氮利用可能部分受铁可用性的限制。

相似文献

1
Limitation of bacterial growth by dissolved organic matter and iron in the Southern ocean.
Appl Environ Microbiol. 2000 Feb;66(2):455-66. doi: 10.1128/AEM.66.2.455-466.2000.
4
Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean.
Appl Environ Microbiol. 2005 Jun;71(6):2979-86. doi: 10.1128/AEM.71.6.2979-2986.2005.
5
Bacterial growth and DOC consumption in a tropical coastal lagoon.
Braz J Biol. 2006 May;66(2A):383-92. doi: 10.1590/s1519-69842006000300002.
6
Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean.
J Basic Microbiol. 2019 Apr;59(4):412-424. doi: 10.1002/jobm.201800537. Epub 2019 Jan 23.
7
Iron, phytoplankton growth, and the carbon cycle.
Met Ions Biol Syst. 2005;43:153-93. doi: 10.1201/9780824751999.ch7.
9
Synergy of fresh and accumulated organic matter to bacterial growth.
Microb Ecol. 2009 May;57(4):657-66. doi: 10.1007/s00248-008-9466-8. Epub 2008 Nov 5.

引用本文的文献

2
Roles of physical disturbance and biome properties in shaping microbial communities within Indian Ocean eddies.
ISME Commun. 2025 Jul 2;5(1):ycaf110. doi: 10.1093/ismeco/ycaf110. eCollection 2025 Jan.
4
Calorimetric measurement of energy and nutrient stimulation of microorganisms from the continental deep subsurface.
Front Microbiol. 2024 Dec 23;15:1455594. doi: 10.3389/fmicb.2024.1455594. eCollection 2024.
5
Microbial iron limitation in the ocean's twilight zone.
Nature. 2024 Sep;633(8031):823-827. doi: 10.1038/s41586-024-07905-z. Epub 2024 Sep 25.
6
Diversity in the utilization of different molecular classes of dissolved organic matter by heterotrophic marine bacteria.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0025624. doi: 10.1128/aem.00256-24. Epub 2024 Jun 26.
8
Preparation of Simple Bicyclic Carboxylate-Rich Alicyclic Molecules for the Investigation of Dissolved Organic Matter.
Environ Sci Technol. 2024 Apr 23;58(16):7078-7086. doi: 10.1021/acs.est.4c00166. Epub 2024 Apr 12.
9
Projected 21st-century changes in marine heterotrophic bacteria under climate change.
Front Microbiol. 2023 Feb 16;14:1049579. doi: 10.3389/fmicb.2023.1049579. eCollection 2023.
10
Tracking nitrogen allocation to proteome biosynthesis in a marine microbial community.
Nat Microbiol. 2023 Mar;8(3):498-509. doi: 10.1038/s41564-022-01303-9. Epub 2023 Jan 12.

本文引用的文献

1
Can bacteria outcompete phytoplankton for phosphorus? a chemostat test.
Microb Ecol. 1984 Sep;10(3):205-16. doi: 10.1007/BF02010935.
3
The uptake of inorganic nutrients by heterotrophic bacteria.
Microb Ecol. 1994 Sep;28(2):255-71. doi: 10.1007/BF00166816.
4
Temperature regulation of bacterial activity during the spring bloom in newfoundland coastal waters.
Science. 1986 Jul 18;233(4761):359-61. doi: 10.1126/science.233.4761.359.
5
Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton.
Appl Environ Microbiol. 1987 Jun;53(6):1298-303. doi: 10.1128/aem.53.6.1298-1303.1987.
8
Bacterioplankton secondary production estimates for coastal waters of british columbia, antarctica, and california.
Appl Environ Microbiol. 1980 Jun;39(6):1085-95. doi: 10.1128/aem.39.6.1085-1095.1980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验