Suppr超能文献

鱼腥藻7120中冷休克诱导的RNA解旋酶基因表达的调控

Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium anabaena sp. strain PCC 7120.

作者信息

Chamot D, Owttrim G W

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.

出版信息

J Bacteriol. 2000 Mar;182(5):1251-6. doi: 10.1128/JB.182.5.1251-1256.2000.

Abstract

Expression of the Anabaena sp. strain PCC 7120 RNA helicase gene crhC is induced by cold shock. crhC transcripts are not detectable at 30 degrees C but accumulate at 20 degrees C, and levels remain elevated for the duration of the cold stress. Light-derived metabolic capability, and not light per se, is required for crhC transcript accumulation. Enhanced crhC mRNA stability contributes significantly to the accumulation of crhC transcripts, with the crhC half-life increasing sixfold at 20 degrees C. The accumulation is reversible, with the cells responding more rapidly to temperature downshifts than to upshifts, as a result of the lack of active mRNA destabilization and the continuation of crhC transcription, at least transiently, after a temperature upshift. Translational inhibitors do not induce crhC expression to cold shock levels, indicating that inhibition of translation is only one of the signals required to activate the cold shock response in Anabaena. Limited amounts of protein synthesis are required for the cold shock-induced accumulation of crhC transcripts, as normal levels of accumulation occur in the presence of tetracycline but are abolished by chloramphenicol. Regulation of crhC expression may also extend to the translational level, as CrhC protein levels do not correlate completely with the pattern of mRNA transcript accumulation. Our experiments indicate that the regulation of crhC transcript accumulation is tightly controlled by both temperature and metabolic activity at the levels of transcription, mRNA stabilization, and translation.

摘要

鱼腥藻属(Anabaena)PCC 7120菌株RNA解旋酶基因crhC的表达受冷休克诱导。在30℃时检测不到crhC转录本,但在20℃时积累,并且在冷应激期间水平持续升高。crhC转录本积累需要光衍生的代谢能力,而不是光本身。crhC mRNA稳定性增强对crhC转录本的积累有显著贡献,在20℃时crhC半衰期增加了六倍。这种积累是可逆的,由于缺乏活跃的mRNA去稳定作用以及温度升高后crhC转录至少暂时持续,细胞对温度下降的反应比对温度上升的反应更快。翻译抑制剂不会将crhC表达诱导到冷休克水平,这表明翻译抑制只是激活鱼腥藻冷休克反应所需的信号之一。冷休克诱导的crhC转录本积累需要有限量的蛋白质合成,因为在四环素存在下会出现正常水平的积累,但氯霉素会消除这种积累。crhC表达的调控可能还延伸到翻译水平,因为CrhC蛋白水平与mRNA转录本积累模式并不完全相关。我们的实验表明,在转录、mRNA稳定和翻译水平上,crhC转录本积累的调控受到温度和代谢活性的严格控制。

相似文献

3
A cold shock-induced cyanobacterial RNA helicase.
J Bacteriol. 1999 Mar;181(6):1728-32. doi: 10.1128/JB.181.6.1728-1732.1999.
4
Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase.
Nucleic Acids Res. 2000 Oct 15;28(20):3926-34. doi: 10.1093/nar/28.20.3926.
7
Autoregulation of RNA helicase expression in response to temperature stress in Synechocystis sp. PCC 6803.
PLoS One. 2012;7(10):e48683. doi: 10.1371/journal.pone.0048683. Epub 2012 Oct 31.
9
Both Enolase and the DEAD-Box RNA Helicase CrhB Can Form Complexes with RNase E in sp. Strain PCC 7120.
Appl Environ Microbiol. 2020 Jun 17;86(13). doi: 10.1128/AEM.00425-20.

引用本文的文献

1
"Life is short, and art is long": RNA degradation in cyanobacteria and model bacteria.
mLife. 2022 Mar 24;1(1):21-39. doi: 10.1002/mlf2.12015. eCollection 2022 Mar.
3
Stress Signaling in Cyanobacteria: A Mechanistic Overview.
Life (Basel). 2020 Nov 26;10(12):312. doi: 10.3390/life10120312.
4
Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Strain WH7803.
Front Microbiol. 2020 Jul 24;11:1707. doi: 10.3389/fmicb.2020.01707. eCollection 2020.
5
Both Enolase and the DEAD-Box RNA Helicase CrhB Can Form Complexes with RNase E in sp. Strain PCC 7120.
Appl Environ Microbiol. 2020 Jun 17;86(13). doi: 10.1128/AEM.00425-20.
6
RNA helicase-regulated processing of the operon results in differential cistron expression and accumulation of two sRNAs.
J Biol Chem. 2020 May 8;295(19):6372-6386. doi: 10.1074/jbc.RA120.013148. Epub 2020 Mar 24.
7
Inactivation of the RNA helicase CrhR impacts a specific subset of the transcriptome in the cyanobacterium sp. PCC 6803.
RNA Biol. 2019 Sep;16(9):1205-1214. doi: 10.1080/15476286.2019.1621622. Epub 2019 Jun 24.
8
Determination of the Settling Rate of Clay/Cyanobacterial Floccules.
J Vis Exp. 2018 Jun 11(136):57176. doi: 10.3791/57176.
9
Association of the Cold Shock DEAD-Box RNA Helicase RhlE to the RNA Degradosome in Caulobacter crescentus.
J Bacteriol. 2017 Jun 13;199(13). doi: 10.1128/JB.00135-17. Print 2017 Jul 1.

本文引用的文献

1
Photosynthetic and respiratory electron transport in a cyanobacterium.
Photosynth Res. 1986 Jan;9(1-2):135-47. doi: 10.1007/BF00029739.
2
A cold shock-induced cyanobacterial RNA helicase.
J Bacteriol. 1999 Mar;181(6):1728-32. doi: 10.1128/JB.181.6.1728-1732.1999.
5
Cold shock and adaptation.
Bioessays. 1998 Jan;20(1):49-57. doi: 10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验