Lundstrom CC
Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, USA.
Nature. 2000 Feb 3;403(6769):527-30. doi: 10.1038/35000546.
Recent seismological, geochemical and experimental observations suggest that, as mantle peridotite melts, the resulting basaltic liquid forms an interconnected network, culminating in the rapid ascent of the basalt relative to the surrounding solid matrix. Mantle melting is therefore a polybaric process, with melts produced over a range of pressures having differing chemical characteristics. Modelling and peridotite-melting experiments designed to simulate polybaric mantle melting generally assume that there is no interaction between melts generated at greater pressures and the overlying solid mantle at lower pressures. Beneath mid-ocean ridges, melts derived from greater depth are probably channelized during ascent, so preventing direct re-equilibration with shallow peridotite, as required by geochemical observations. I show here, however, that sodium in ascending melts will quickly diffuse into the melt formed within nearby peridotite at lower pressures. This process fundamentally changes the manner by which the peridotite melts, and can account for both the creation of silica-rich glass inclusions in mantle xenoliths and the anomalous melting modes recorded by abyssal peridotites. Increased melting of lithosphere and upwelling asthenosphere could result from this process without the need to invoke higher mantle temperatures.
最近的地震学、地球化学和实验观测表明,随着地幔橄榄岩熔融,所产生的玄武质熔体形成一个相互连通的网络,最终导致玄武岩相对于周围固体基质快速上升。因此,地幔熔融是一个多压力过程,在一系列压力下产生的熔体具有不同的化学特征。旨在模拟多压力地幔熔融的模型和橄榄岩熔融实验通常假定,在较高压力下产生的熔体与较低压力下的上覆地幔固体之间不存在相互作用。在大洋中脊之下,来自更深深度的熔体在上升过程中可能会被引导,从而如地球化学观测所要求的那样,防止其与浅层橄榄岩直接重新平衡。然而,我在此表明,上升熔体中的钠会迅速扩散到附近较低压力下橄榄岩中形成的熔体中。这一过程从根本上改变了橄榄岩的熔融方式,并且可以解释地幔捕虏体中富硅玻璃包裹体的形成以及深海橄榄岩记录的异常熔融模式。这一过程可能导致岩石圈熔融增加和软流圈上涌,而无需提高地幔温度。