Grodsky N B, Soundar S, Colman R F
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
Biochemistry. 2000 Mar 7;39(9):2193-200. doi: 10.1021/bi9919753.
Pig heart NADP-dependent isocitrate dehydrogenase requires a divalent metal cation for catalysis. On the basis of affinity cleavage studies [Soundar and Colman (1993) J. Biol. Chem. 268, 5267] and analysis of the crystal structure of E. coli NADP-isocitrate dehydrogenase [Hurley et al. (1991) Biochemistry 30, 8671], the residues Asp(253), Asp(273), Asp(275), and Asp(279) were selected as potential ligands of the divalent metal cation in the pig heart enzyme. Using a megaprimer PCR method, the Asp at each of these positions was mutated to Asn. The wild-type and mutant enzymes were expressed in Escherichia coli and purified. D253N has a specific activity, K(m) values for Mn(2+), isocitrate, and NADP, and also a pH-V(max) profile similar to those of the wild-type enzyme. Thus, Asp(253) is not involved in enzyme function. D273N has an increased K(m) for Mn(2+) and isocitrate with a specific activity 5% that of wild type. The D273N mutation also prevents the oxidative metal cleavage seen with Fe(2+) alone in the wild-type enzyme. As compared to wild type, D275N has greatly increased K(m) values for Mn(2+) and isocitrate, with a specific activity <0.1% that of wild type, and a large increase in pK(a) for the enzyme-substrate complex. D279N has only small increases in K(m) for Mn(2+) and isocitrate, but a specific activity <0.1% that of wild type and a major change in the shape of its pH-V(max) profile. These results suggest that Asp(273) and Asp(275) contribute to metal binding, whereas Asp(279), as well as Asp(275), is critical for catalysis. Asp(279) may function as the catalytic base. Using the Modeler program of Insight II, a structure for porcine NADP-isocitrate dehydrogenase was built based on the X-ray coordinates of the E. coli enzyme, allowing visualization of the metal-isocitrate site.
猪心NADP依赖的异柠檬酸脱氢酶催化反应需要二价金属阳离子。基于亲和裂解研究[桑达尔和科尔曼(1993年)《生物化学杂志》268, 5267]以及对大肠杆菌NADP - 异柠檬酸脱氢酶晶体结构的分析[赫尔利等人(1991年)《生物化学》30, 8671],天冬氨酸残基Asp(253)、Asp(273)、Asp(275)和Asp(279)被选为猪心酶中二价金属阳离子的潜在配体。使用大引物PCR方法,将这些位置上的每个天冬氨酸突变为天冬酰胺。野生型和突变型酶在大肠杆菌中表达并纯化。D253N的比活性、对Mn(2+)、异柠檬酸和NADP的K(m)值以及pH - V(max)曲线与野生型酶相似。因此,Asp(253)不参与酶的功能。D273N对Mn(2+)和异柠檬酸的K(m)增加,比活性为野生型的5%。D273N突变还阻止了野生型酶中仅用Fe(2+)时出现的氧化金属裂解。与野生型相比,D275N对Mn(2+)和异柠檬酸的K(m)值大幅增加,比活性小于野生型的0.1%,并且酶 - 底物复合物的pK(a)大幅增加。D279N对Mn(2+)和异柠檬酸的K(m)仅略有增加,但比活性小于野生型的0.1%,并且其pH - V(max)曲线形状发生重大变化。这些结果表明,Asp(273)和Asp(275)有助于金属结合,而Asp(279)以及Asp(275)对催化作用至关重要。Asp(279)可能作为催化碱基。使用Insight II的Modeler程序,基于大肠杆菌酶的X射线坐标构建了猪NADP - 异柠檬酸脱氢酶的结构,从而可以可视化金属 - 异柠檬酸位点。