Brino L, Urzhumtsev A, Mousli M, Bronner C, Mitschler A, Oudet P, Moras D
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM, Université Louis Pasteur, BP 163, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France.
J Biol Chem. 2000 Mar 31;275(13):9468-75. doi: 10.1074/jbc.275.13.9468.
DNA-gyrase exhibits an unusual ATP-binding site that is formed as a result of gyrase B subunit dimerization, a structural transition that is also essential for DNA capture during the topoisomerization cycle. Previous structural studies on Escherichia coli DNA-gyrase B revealed that dimerization is the result of a polypeptidic exchange involving the N-terminal 14 amino acids. To provide experimental data that dimerization is critical for ATPase activity and enzyme turnover, we generated mutants with reduced dimerization by mutating the two most conserved residues of the GyrB N-terminal arm (Tyr-5 and Ile-10 residues). Our data demonstrate that the hydrophobic Ile-10 residue plays an important role in enzyme dimerization and the nucleotide-protein contact mediated by Tyr-5 side chain residue helps the dimerization process. Analysis of ATPase activities of mutant proteins provides evidence that dimerization enhances the ATP-hydrolysis turnover. The structure of the Y5S mutant of the N-terminal 43-kDa fragment of E. coli DNA GyrB subunit indicates that Tyr-5 residue provides a scaffold for the ATP-hydrolysis center. We describe a channel formed at the dimer interface that provides a structural mechanism to allow reactive water molecules to access the gamma-phosphate group of the bound ATP molecule. Together, these results demonstrate that dimerization strongly contributes to the folding and stability of the catalytic site for ATP hydrolysis. A role for the essential Mg(2+) ion for the orientation of the phosphate groups of the bound nucleotide inside the reactive pocket was also uncovered by superposition of the 5'-adenylyl beta-gamma-imidodiphosphate (ADPNP) wild-type structure to the salt-free ADPNP structure.
DNA促旋酶表现出一个不同寻常的ATP结合位点,该位点是由促旋酶B亚基二聚化形成的,这种结构转变对于拓扑异构化循环中的DNA捕获也至关重要。先前对大肠杆菌DNA促旋酶B的结构研究表明,二聚化是涉及N端14个氨基酸的多肽交换的结果。为了提供实验数据证明二聚化对于ATP酶活性和酶周转至关重要,我们通过突变GyrB N端臂的两个最保守残基(Tyr-5和Ile-10残基)生成了二聚化减少的突变体。我们的数据表明,疏水的Ile-10残基在酶二聚化中起重要作用,由Tyr-5侧链残基介导的核苷酸-蛋白质接触有助于二聚化过程。对突变蛋白ATP酶活性的分析提供了证据,表明二聚化增强了ATP水解周转。大肠杆菌DNA GyrB亚基N端43-kDa片段的Y5S突变体结构表明,Tyr-5残基为ATP水解中心提供了一个支架。我们描述了在二聚体界面形成的一个通道,该通道提供了一种结构机制,使反应性水分子能够接触到结合的ATP分子的γ-磷酸基团。总之,这些结果表明二聚化对ATP水解催化位点的折叠和稳定性有很大贡献。通过将5'-腺苷β-γ-亚氨基二磷酸(ADPNP)野生型结构与无盐ADPNP结构叠加,还发现了必需的Mg(2+)离子在反应口袋内结合核苷酸的磷酸基团定向中的作用。