Suppr超能文献

利用长循环热敏脂质体和局部热疗将化疗靶向作用于实体瘤。

Targeting chemotherapy to solid tumors with long-circulating thermosensitive liposomes and local hyperthermia.

作者信息

Ishida O, Maruyama K, Yanagie H, Eriguchi M, Iwatsuru M

机构信息

Department of Pharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tsukuigun, Kanagawa.

出版信息

Jpn J Cancer Res. 2000 Jan;91(1):118-26. doi: 10.1111/j.1349-7006.2000.tb00868.x.

Abstract

The effectiveness of the combination of long-circulating, thermosensitive liposomes and hyperthermia is described. Small-sized, thermosensitive liposomes that encapsulate doxorubicin (DXR-PEG-TSL (SUV)) have a prolonged circulation time and are extravasated to targeted solid tumors in vivo, where they preferentially release the agent in an anatomical site subjected to local hyperthermia. Liposomes were prepared by the incorporation of amphipathic polyethyleneglycol (PEG) to prolong their circulation time. DXR-PEG-TSL (SUV) was retained longest and was accumulated most efficiently in solid tumors in Balb/c mice. The combination of DXR-PEG-TSL (SUV) and hyperthermia at the tumor sites 3 h after injection, gave high concentrations of doxorubicin in tumor tissue and resulted in more effective tumor retardation and increased survival time. A large amount of DXR-PEG-TSL (SUV) was extravasated into the tumors during circulation for 3 h after injection, suggesting that the encapsulated drug was released into the interstitial spaces of the lesions by local hyperthermia. This system is expected to be clinically valuable for the delivery of a wide range of chemotherapeutic agents in the treatment of solid tumors.

摘要

本文描述了长循环热敏脂质体与热疗联合使用的有效性。包裹阿霉素的小尺寸热敏脂质体(阿霉素-聚乙二醇-热敏脂质体(SUV))具有延长的循环时间,并且在体内能外渗到靶向实体瘤中,在那里它们优先在局部受热的解剖部位释放药物。通过加入两亲性聚乙二醇(PEG)来制备脂质体以延长其循环时间。阿霉素-聚乙二醇-热敏脂质体(SUV)在Balb/c小鼠的实体瘤中保留时间最长且积累效率最高。注射后3小时在肿瘤部位将阿霉素-聚乙二醇-热敏脂质体(SUV)与热疗联合使用,可使肿瘤组织中阿霉素浓度升高,并导致更有效的肿瘤生长抑制和延长生存时间。注射后循环3小时期间,大量阿霉素-聚乙二醇-热敏脂质体(SUV)外渗到肿瘤中,这表明包封的药物通过局部热疗释放到病变的间质空间中。该系统有望在实体瘤治疗中广泛递送多种化疗药物方面具有临床价值。

相似文献

1
Targeting chemotherapy to solid tumors with long-circulating thermosensitive liposomes and local hyperthermia.
Jpn J Cancer Res. 2000 Jan;91(1):118-26. doi: 10.1111/j.1349-7006.2000.tb00868.x.
3
Enhanced delivery of doxorubicin to tumor by long-circulating thermosensitive liposomes and local hyperthermia.
Biochim Biophys Acta. 1993 Jul 4;1149(2):209-16. doi: 10.1016/0005-2736(93)90203-c.
4
Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors.
J Control Release. 2016 Jan 28;222:47-55. doi: 10.1016/j.jconrel.2015.12.004. Epub 2015 Dec 3.
5
Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy.
J Control Release. 2013 Jun 10;168(2):142-50. doi: 10.1016/j.jconrel.2013.03.011. Epub 2013 Mar 21.
9
A novel two-step mild hyperthermia for advanced liposomal chemotherapy.
J Control Release. 2014 Jan 28;174:202-8. doi: 10.1016/j.jconrel.2013.11.012. Epub 2013 Nov 22.
10
Enhanced Specificity and Drug Delivery in Tumors by cRGD-Anchoring Thermosensitive Liposomes.
Pharm Res. 2015 Dec;32(12):3862-76. doi: 10.1007/s11095-015-1746-7. Epub 2015 Jul 23.

引用本文的文献

2
Loading and Releasing Ciprofloxacin in Photoactivatable Liposomes.
Biochem Eng J. 2019 Jan 15;141:43-48. doi: 10.1016/j.bej.2018.10.008. Epub 2018 Oct 11.
3
Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release.
Biomaterials. 2016 Jan;75:193-202. doi: 10.1016/j.biomaterials.2015.10.027. Epub 2015 Oct 23.
4
Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo.
ACS Nano. 2012 Oct 23;6(10):9335-46. doi: 10.1021/nn302148p. Epub 2012 Aug 15.
5
Near-infrared image-guided delivery and controlled release using optimized thermosensitive liposomes.
Pharm Res. 2012 Aug;29(8):2092-103. doi: 10.1007/s11095-012-0738-0. Epub 2012 Mar 27.

本文引用的文献

1
Enhanced delivery of doxorubicin to tumor by long-circulating thermosensitive liposomes and local hyperthermia.
Biochim Biophys Acta. 1993 Jul 4;1149(2):209-16. doi: 10.1016/0005-2736(93)90203-c.
2
Enhanced tumor targeting of doxorubicin by ganglioside GM1-bearing long-circulating liposomes.
J Drug Target. 1993;1(4):287-92. doi: 10.3109/10611869308996086.
5
Interaction between adriamycin cytotoxicity and hyperthermia: growth-phase-dependent thermal sensitization.
Int J Hyperthermia. 1994 Nov-Dec;10(6):817-26. doi: 10.3109/02656739409012374.
6
Modified in vivo behavior of liposomes containing synthetic glycolipids.
Biochim Biophys Acta. 1981 Apr 17;674(1):19-29. doi: 10.1016/0304-4165(81)90342-1.
7
Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient.
Biochim Biophys Acta. 1986 May 9;857(1):123-6. doi: 10.1016/0005-2736(86)90105-7.
8
Large unilamellar liposomes with low uptake into the reticuloendothelial system.
FEBS Lett. 1987 Oct 19;223(1):42-6. doi: 10.1016/0014-5793(87)80506-9.
9
Fate and behavior of liposomes in vivo: a review of controlling factors.
Crit Rev Ther Drug Carrier Syst. 1987;3(2):123-93.
10
Extravascular transport in normal and tumor tissues.
Crit Rev Oncol Hematol. 1986;5(2):115-70. doi: 10.1016/s1040-8428(86)80023-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验