Flynn J, McBean G J
Department of Biochemistry, University College Dublin, Belfield, Ireland.
Neurochem Int. 2000 May;36(6):513-21. doi: 10.1016/s0197-0186(99)00151-5.
The synaptosomal transport of L-[35S]cystine occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and the specificity of inhibitors. They are (a) low affinity sodium-dependent transport (Km 463 +/- 86 microM, Vmax 185 +/- 20 nmol mg protein-1 min-1), (b) high affinity sodium-independent transport (Km 6.90 +/- 2.1 microM, Vmax 0.485 +/- 0.060 nmol mg protein(-1) min(-1)) and (c) low affinity sodium-independent transport (Km 327 +/- 29 microM, Vmax 4.18 +/- 0.25 nmol mg protein(-1) min(-1)). The sodium-dependent transport of L-cystine was mediated by the X(AG)- family of glutamate transporters, and accounted for almost 90% of the total quantity of L-[35S]cystine accumulated into synaptosomes. L-glutamate (Ki 11.2 +/- 1.3 microM) was a non-competitive inhibitor of this transporter, and at 100 microM L-glutamate, the Vmax for L-[35S]cystine transport was reduced to 10% of control. L-cystine did not inhibit the high-affinity sodium-dependent transport of D-[3H]aspartate into synaptosomes. L-histidine and glutathione were the most potent inhibitors of the low affinity sodium-independent transport of L-[35S]cystine. L-homocysteate, L-cysteine sulphinate and L-homocysteine sulphinate were also effective inhibitors. 1 mM L-glutamate reduced the sodium-independent transport of L-cystine to 63% of control. These results suggest that the vast majority of the L-cystine transported into synaptosomes occurs by the high-affinity glutamate transporters, but that L-cystine may bind to a site that is distinct from that to which L-glutamate binds. The uptake of L-cystine by this mechanism is sensitive to inhibition by increased extracellular concentrations of L-glutamate. The importance of these results for understanding the mechanism of glutamate-mediated neurotoxicity is discussed.
L-[35S]胱氨酸的突触体转运通过三种机制进行,这三种机制可根据其离子依赖性、转运动力学和抑制剂的特异性来区分。它们分别是:(a) 低亲和力钠依赖性转运(Km为463±86微摩尔,Vmax为185±20纳摩尔·毫克蛋白-1·分钟-1);(b) 高亲和力钠非依赖性转运(Km为6.90±2.1微摩尔,Vmax为0.485±0.060纳摩尔·毫克蛋白(-1)·分钟(-1));以及(c) 低亲和力钠非依赖性转运(Km为327±29微摩尔,Vmax为4.18±0.25纳摩尔·毫克蛋白(-1)·分钟(-1))。L-胱氨酸的钠依赖性转运由谷氨酸转运体的X(AG)-家族介导,占积累到突触体中的L-[35S]胱氨酸总量的近90%。L-谷氨酸(Ki为11.2±1.3微摩尔)是该转运体的非竞争性抑制剂,在100微摩尔L-谷氨酸存在时,L-[35S]胱氨酸转运的Vmax降至对照的10%。L-胱氨酸不抑制D-[3H]天冬氨酸向突触体的高亲和力钠依赖性转运。L-组氨酸和谷胱甘肽是L-[35S]胱氨酸低亲和力钠非依赖性转运的最有效抑制剂。L-同型半胱氨酸、L-半胱氨酸亚磺酸盐和L-同型半胱氨酸亚磺酸盐也是有效的抑制剂。1毫摩尔L-谷氨酸将L-胱氨酸的钠非依赖性转运降至对照的63%。这些结果表明,转运到突触体中的绝大多数L-胱氨酸是通过高亲和力谷氨酸转运体进行的,但L-胱氨酸可能与一个不同于L-谷氨酸结合位点的位点结合。通过这种机制摄取L-胱氨酸对细胞外L-谷氨酸浓度升高引起的抑制敏感。讨论了这些结果对于理解谷氨酸介导的神经毒性机制的重要性。