Rajewsky M F, Engelbergs J, Thomale J, Schweer T
Institute of Cell Biology (Cancer Research) [IFZ], University of Essen Medical School and West German Cancer Center Essen, Hufeland-Strasse 55, D-45122, Essen, Germany.
Mutat Res. 2000 Apr;462(2-3):101-5. doi: 10.1016/s1383-5742(00)00020-x.
DNA-reactive carcinogens and anticancer drugs induce many structurally distinct mutagenic and cytotoxic DNA lesions. The varying capability of normal and malignant cells to recognize and repair specific DNA lesions influences both cancer risk and the relative sensitivity or resistance of cancer cells towards cytotoxic agents. Using monoclonal antibody-based immunoanalytical assays, very low amounts of defined carcinogen-DNA adducts can be quantified in bulk genomic DNA, in individual genes, and in the nuclear DNA of single cells. DNA repair kinetics can, thus, be measured in a lesion-, gene-, and cell type-specific manner, and the DNA repair profiles of malignant cells can be monitored in individual patients. Even structurally very similar DNA lesions may be repaired with strongly differing efficiency. The miscoding DNA alkylation products O(6)-methylguanine and O(6)-ethylguanine, for example, differ only by one CH(2) group. These lesions are formed in DNA upon exposure to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea, both of which induce mammary adenocarcinomas in female rats at high yield. Unrepaired O(6)-alkylguanines in DNA cause G:C-->A:T transition mutations via mispairing during DNA replication. O(6)-methylguanines are repaired at a similar slow rate in both transcriptionally active (H-ras, beta-actin) and inactive genes (IgE heavy chain; bulk DNA) of the target mammary epithelia (which express the repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) at a very low level). In contrast, O(6)-ethylguanines are repaired approximately 20 times faster than O(6)-methylguanines in both DNA strands of the transcribed genes selectively via an AGT-independent, as yet unclarified excision mechanism. Accordingly, G:C-->A:T transitions resulting from the misreplication of an O(6)-methylated guanine at the second position of codon 12 (GGA) of H-ras represent a frequent "signature" mutation in rat mammary adenocarcinomas that develop after exposure to N-methyl-N-nitrosourea. However, this mutation is not observed when these tumors are induced by N-ethyl-N-nitrosourea, due to the fast repair of O(6)-ethylguanines in the H-ras gene. The key importance of "conventional" and "conditional" gene knockout technology for resolving the intricacies of the complex network of DNA repair pathways is briefly discussed.
DNA反应性致癌物和抗癌药物会诱导产生许多结构各异的诱变和细胞毒性DNA损伤。正常细胞和恶性细胞识别并修复特定DNA损伤的能力各不相同,这既影响癌症风险,也影响癌细胞对细胞毒性药物的相对敏感性或抗性。使用基于单克隆抗体的免疫分析方法,可以对大量基因组DNA、单个基因以及单细胞的核DNA中的极少量特定致癌物-DNA加合物进行定量。因此,可以以损伤、基因和细胞类型特异性的方式测量DNA修复动力学,并监测个体患者中恶性细胞的DNA修复情况。即使结构非常相似的DNA损伤,其修复效率也可能有很大差异。例如,编码错误的DNA烷基化产物O(6)-甲基鸟嘌呤和O(6)-乙基鸟嘌呤仅相差一个CH(2)基团。这些损伤在DNA暴露于N-甲基-N-亚硝基脲或N-乙基-N-亚硝基脲时形成,这两种物质都能在雌性大鼠中高产诱导乳腺腺癌。DNA中未修复的O(6)-烷基鸟嘌呤会在DNA复制过程中通过错配导致G:C→A:T转换突变。在目标乳腺上皮细胞(其O(6)-烷基鸟嘌呤-DNA烷基转移酶(AGT)表达水平极低)的转录活性基因(H-ras、β-肌动蛋白)和非活性基因(IgE重链;大量DNA)中,O(6)-甲基鸟嘌呤的修复速度都很慢。相比之下,在转录基因的两条DNA链中,O(6)-乙基鸟嘌呤通过一种不依赖AGT的、尚未明确的切除机制,其修复速度比O(6)-甲基鸟嘌呤快约20倍。因此,由H-ras密码子12(GGA)第二位的O(6)-甲基化鸟嘌呤错配复制导致的G:C→A:T转换是暴露于N-甲基-N-亚硝基脲后发生的大鼠乳腺腺癌中常见 的“特征性”突变。然而,当这些肿瘤由N-乙基-N-亚硝基脲诱导时,由于H-ras基因中O(6)-乙基鸟嘌呤的快速修复,不会观察到这种突变。本文简要讨论了“常规”和“条件性”基因敲除技术对于解析复杂DNA修复途径网络的复杂性的关键重要性。