Suppr超能文献

Electron spin-lattice relaxation rates for high-spin Fe(III) complexes in glassy solvents at temperatures between 6 and 298 K.

作者信息

Zhou Y, Bowler B E, Eaton G R, Eaton S S

机构信息

Department of Chemistry and Biochemistry, University of Denver, Colorado 80208, USA.

出版信息

J Magn Reson. 2000 May;144(1):115-22. doi: 10.1006/jmre.2000.2047.

Abstract

The temperature dependence of spin-lattice relaxation rates was analyzed for four high-spin nonheme iron proteins between 5 and 20 K, for three high-spin iron porphyrins between 5 and 118 K, and for four high-spin heme proteins between 5 and 150 to 298 K. For the nonheme proteins the zero-field splittings, D, are less than 0.7 cm(-1), and the relaxation is dominated by the Orbach and Raman processes. For the iron porphyrins and heme proteins D is between 4 and 12 cm(-1) and the relaxation is dominated by the Orbach process between about 5 and 100 K and by a local mode at higher temperatures. The relaxation rates for the heme proteins in glassy matrices extrapolated to values at room temperature that are similar to values obtained by NMR relaxivity in fluid solution. This similarity suggests that for high-spin Fe(III) heme proteins with effective intramolecular spin-lattice relaxation processes, the additional motional freedom gained when a relatively large protein goes from glassy solid to liquid solution at room temperature has little impact on spin-lattice relaxation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验