Ungar G, Percec V, Holerca MN, Johansson G, Heck JA
Department of Engineering Materials, University of Sheffield, UK.
Chemistry. 2000 Apr 3;6(7):1258-66. doi: 10.1002/(sici)1521-3765(20000403)6:7<1258::aid-chem1258>3.0.co;2-o.
Synthesis and modes of self-assembly are described for the tapered monodendritic molecules 3,4,5-nGi-X of generation i = 1, 2, 3 (see structures below) that contain multiple (CH2)nH alkyl chains on their periphery (n = 12, 14, 16) and a polar group X at the apex (X = COOH, COONa, COOCs, CO(OCH2CH2)3OH). These monodendrons self-assemble into supramolecular cylindrical or spherical dendrimers, which in turn self-organise into p6mm columnar or Pm3n cubic thermotropic liquid crystals, respectively. The two principal ways of affecting the self-assembly of these compounds by means of their molecular architecture are: a) by changing the width of the wide (aliphatic) end, and b) by changing the volume at the apex. In the present work a) is controlled through temperature (conformational disorder) and b) is controlled by chaging the generation number i or the size of X, for example, through the choice of metal cation. The single most important geometric parameter of these dendritic building blocks is the molecular solid angle (taper angle) alpha; a high alpha leads to spherical and a low alpha to cylindrical supramolecular dendrimers. Furthermore, alpha also determines the equilibrium size of the supramolecular objects; a larger alpha results in a smaller diameter. The unusually strong negative thermal expansion coefficient of the cubic and columnar lattice is attributed to the excess of the increasingly highly tapered molecules being rejected from their parent aggregates and reassembling as new ones. Increasing alpha is also considered to be responsible for the observed thermotropic columnar-cubic transition.
描述了第i代(i = 1、2、3)的锥形单枝状分子3,4,5-nGi-X的合成及自组装模式(见以下结构),这些分子在其外围含有多个(CH2)nH烷基链(n = 12、14、16),在顶端含有一个极性基团X(X = COOH、COONa、COOCs、CO(OCH2CH2)3OH)。这些单枝状分子自组装成超分子圆柱形或球形树枝状大分子,进而分别自组织成p6mm柱状或Pm3n立方热致液晶。通过分子结构影响这些化合物自组装的两种主要方式为:a)改变宽(脂肪族)端的宽度,b)改变顶端的体积。在本工作中,a)通过温度(构象无序)控制,b)通过改变代数i或X的大小来控制,例如通过选择金属阳离子。这些树枝状结构单元的最重要几何参数是分子立体角(锥角)α;高α导致球形超分子树枝状大分子,低α导致圆柱形超分子树枝状大分子。此外α还决定了超分子物体的平衡尺寸;α越大,直径越小。立方晶格和柱状晶格异常强的负热膨胀系数归因于越来越高度锥形化的分子从其母体聚集体中被排斥,并重新组装成新的聚集体。α的增加也被认为是观察到的热致柱状 - 立方转变的原因。