Garrido S M, Willman C, Appelbaum F R, Banker D E
Division of Hematology, University of Washington, School of Medicine, Seattle, USA.
Cytometry. 2000 Apr 15;42(2):83-94. doi: 10.1002/(sici)1097-0320(20000415)42:2<83::aid-cyto1>3.0.co;2-g.
Checkpoint alterations that impact cell cycle and apoptosis responses to therapeutic treatments may produce drug resistance in acute myeloid leukemia (AML). To study these, we have developed flow cytometry assays of checkpoint function that also allow quantitation of key molecular regulators of apoptosis and cell cycle. We have used three-color (3C) assays, with FITC-labeled anti-BCL-2 and PE-labeled anti-proliferating cell nuclear antigen (PCNA) antibodies, and the DNA dye 7-aminoactinomycin, to characterize primary leukemia cells identified in DNA x side light scatter (SSC) histograms. We showed that 3C assays are accurate and reproducible in analyses of leukemia cell lines and of primary AML and normal bone marrow samples (Banker et al.: Blood 89: 243-255, 1997; Banker et al.: Leukemia Res 22: 221-239, 1998; Banker et al.: Clin Cancer Res 4: 3051-3062, 1998). To further confirm the validity of our SSC leukemia cell gating and to address whether immunophenotypic AML subsets might have different biologic properties, we have now designed four-color (4C) flow assays to characterize checkpoint status in leukemic blasts specifically identified by surface immunostaining. In modeling this assay strategy, PE/Cy5-labeled anti-CD34 antibody was used to detect blasts, with FITC-labeled anti-BCL-2, PE-labeled anti-PCNA antibodies, and Hoechst 33342 (H33342) DNA dye. Four-color CD34-gated data was concordant with 3C, SSC-gated data for leukemia cell lines and for most primary AML samples with high and intermediate blast counts. BCL-2 and PCNA immunopositivity and sub-G1 apoptosis determinations were different in the CD34-gated versus SSC-gated blasts in particular samples with smaller CD34(+) subsets, suggesting that leukemia samples can contain blast subsets with different biologic properties. On the other hand, PCNA-gated cell-cycle distributions in untreated cells and G1 versus S phase cell-cycle arrests after cytosine arabinoside treatments were completely concordant in 4C and 3C assays. We conclude that both 3C and 4C assays can be used to characterize protein expression and cell-cycle drug response patterns in leukemia blasts, but that 4C assays may additionally allow discrimination of these properties in immunophenotypic leukemia subsets.
影响细胞周期及对治疗性处理的凋亡反应的检查点改变可能在急性髓系白血病(AML)中产生耐药性。为研究这些,我们开发了检查点功能的流式细胞术检测方法,该方法还能对凋亡和细胞周期的关键分子调节因子进行定量分析。我们使用三色(3C)检测方法,采用异硫氰酸荧光素(FITC)标记的抗BCL-2抗体、藻红蛋白(PE)标记的抗增殖细胞核抗原(PCNA)抗体以及DNA染料7-氨基放线菌素D,对在DNA与侧向散射光(SSC)直方图中识别出的原发性白血病细胞进行特征分析。我们发现3C检测方法在白血病细胞系、原发性AML及正常骨髓样本分析中准确且可重复(Banker等人:《血液》89: 243 - 255, 1997;Banker等人:《白血病研究》22: 221 - 239, 1998;Banker等人:《临床癌症研究》4: 3051 - 3062, 1998)。为进一步证实我们的SSC白血病细胞门控的有效性,并探讨免疫表型AML亚群是否可能具有不同生物学特性,我们现已设计了四色(4C)流式检测方法,以对通过表面免疫染色特异性识别的白血病原始细胞中的检查点状态进行特征分析。在构建此检测策略模型时,采用PE/Cy5标记的抗CD34抗体来检测原始细胞,同时使用FITC标记的抗BCL-2抗体、PE标记的抗PCNA抗体以及Hoechst 33342(H33342)DNA染料。四色CD34门控数据与3C、SSC门控数据在白血病细胞系以及大多数原始细胞计数高和中等的原发性AML样本中是一致的。在特定CD34(+)亚群较小的样本中,CD34门控与SSC门控的原始细胞中BCL-2和PCNA免疫阳性及亚G1期凋亡测定结果不同,这表明白血病样本可能包含具有不同生物学特性的原始细胞亚群。另一方面,在4C和3C检测中,未处理细胞中PCNA门控的细胞周期分布以及阿糖胞苷处理后G1期与S期细胞周期阻滞情况完全一致。我们得出结论,3C和4C检测方法均可用于表征白血病原始细胞中的蛋白质表达及细胞周期药物反应模式,但4C检测方法可能还能够区分免疫表型白血病亚群中的这些特性。