Bois F Y
Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.
Environ Health Perspect. 2000 May;108 Suppl 2(Suppl 2):275-82. doi: 10.1289/ehp.00108s2275.
Two physiologically based pharmacokinetic models for trichloroethylene (TCE) in mice and humans were calibrated with new toxicokinetic data sets. Calibration is an important step in model development, essential to a legitimate use of models for research or regulatory purposes. A Bayesian statistical framework was used to combine prior information about the model parameters with the data likelihood to yield posterior parameter distributions. For mice, these distributions represent uncertainty. For humans, the use of a population statistical model yielded estimates of both variability and uncertainty in human toxicokinetics of TCE. After adjustment of the models by Markov chain Monte Carlo sampling, the mouse model agreed with a large part of the data. Yet, some data on secondary metabolites were not fit well. The posterior parameter distributions obtained for mice were quite narrow (coefficient of variation [CV] of about 10 or 20%), but these CVs might be underestimated because of the incomplete fit of the model. The data fit, for humans, was better than for mice. Yet, some improvement of the model is needed to correctly describe trichloroethanol concentrations over long time periods. Posterior uncertainties about the population means corresponded to 10-20% CV. In terms of human population variability, volumes and flows varied across subject by approximately 20% CV. The variability was somewhat higher for partition coefficients (between 30 and 40%) and much higher for the metabolic parameters (standard deviations representing about a factor of 2). Finally, the analysis points to differences between human males and females in the toxicokinetics of TCE. The significance of these differences in terms of risk remains to be investigated.
利用新的毒代动力学数据集对小鼠和人类三氯乙烯(TCE)的两种基于生理的药代动力学模型进行了校准。校准是模型开发中的重要一步,对于将模型合理用于研究或监管目的至关重要。采用贝叶斯统计框架将有关模型参数的先验信息与数据似然性相结合,以产生后验参数分布。对于小鼠,这些分布表示不确定性。对于人类,使用群体统计模型得出了TCE人体毒代动力学变异性和不确定性的估计值。通过马尔可夫链蒙特卡罗抽样对模型进行调整后,小鼠模型与大部分数据相符。然而,一些关于次级代谢产物的数据拟合效果不佳。小鼠的后验参数分布相当窄(变异系数[CV]约为10%或20%),但由于模型拟合不完全,这些CV值可能被低估。人类的数据拟合情况比小鼠更好。然而,需要对模型进行一些改进以正确描述长时间内的三氯乙醇浓度。群体均值的后验不确定性对应10%-20%的CV。就人群变异性而言,体积和流量在个体间的变化约为20%的CV。分配系数的变异性略高(在30%至40%之间),代谢参数的变异性更高(标准差约为2倍)。最后,分析指出了TCE人体毒代动力学在男性和女性之间的差异。这些差异在风险方面的意义仍有待研究。