Shaposhnikov M V, Zaĭnullin V G
Institute of Biology, Komi Research Center, Russian Academy of Sciences, Komi Republic, Russia.
Genetika. 2000 Apr;36(4):487-92.
Recent investigations showed that genetic instability accounts for many radiobiological effects. However, mechanisms underlying this phenomenon are still poorly understood. Assuming that mobile genetic elements may be involved in the induction of genetic instability, we studied parameters that characterize the activity of these elements in Drosophila melanogaster: hybrid dysgenesis and the level of recessive lethal mutations. In our experiments, we used D. melanogaster strains that differed in the type of hybrid dysgenesis (P-M and H-E). It was demonstrated that chronic exposure to radiation leads to substantial changes in the genetic structure of a population and an enhanced level of dysgenic sterility. Our results indicate that genetic instability and adaptation to the effect of chronic gamma-radiation are associated with the radiation-induced mobilization of mobile genetic elements.