Suppr超能文献

运动神经元有效树突场的活动依赖性重新配置。

Activity-dependent reconfiguration of the effective dendritic field of motoneurons.

作者信息

Korogod S M, Kulagina I B, Horcholle-Bossavit G, Gogan P, Tyc-Dumont S

机构信息

Dniepropetrovsk Division, International Center for Molecular Physiology, National Academy of Sciences of Ukraine, Research Laboratory of Biophysics and Bioelectronics, Dniepropetrovsk State University, Dniepropetrovsk, 320625, Ukraine.

出版信息

J Comp Neurol. 2000 Jun 19;422(1):18-34.

Abstract

A neuron in vivo receives a continuous bombardment of synaptic inputs that modify the integrative properties of dendritic arborizations by changing the specific membrane resistance (R(m)). To address the mechanisms by which the synaptic background activity transforms the charge transfer effectiveness (T(x)) of a dendritic arborization, the authors simulated a neuron at rest and a highly excited neuron. After in vivo identification of the motoneurons recorded and stained intracellularly, the motoneuron arborizations were reconstructed at high spatial resolution. The neuronal model was constrained by the geometric data describing the numerized arborization. The electrotonic structure and T(x) were computed under different R(m) values to mimic a highly excited neuron (1 kOhm x cm(2)) and a neuron at rest (100 kOhm x cm(2)). The authors found that the shape and the size of the effective dendritic fields varied in the function of R(m). In the highly excited neuron, the effective dendritic field was reduced spatially by switching off most of the distal dendritic branches, which were disconnected functionally from the somata. At rest, the entire dendritic field was highly efficient in transferring current to the somata, but there was a lack of spatial discrimination. Because the large motoneurons are more sensitive to variations in the upper range of R(m), they switch off their distal dendrites before the small motoneurons. Thus, the same anatomic structure that shrinks or expands according to the background synaptic activity can select the types of its synaptic inputs. The results of this study demonstrate that these reconfigurations of the effective dendritic field of the motoneurons are activity-dependent and geometry-dependent.

摘要

体内的神经元会持续受到突触输入的轰击,这些输入通过改变特定膜电阻(R(m))来改变树突分支的整合特性。为了探究突触背景活动改变树突分支电荷转移效率(T(x))的机制,作者模拟了静息状态的神经元和高度兴奋的神经元。在对细胞内记录和染色的运动神经元进行体内鉴定后,以高空间分辨率重建了运动神经元的树突分支。神经元模型受描述数字化树突分支的几何数据约束。在不同的R(m)值下计算电紧张结构和T(x),以模拟高度兴奋的神经元(1kΩ·cm²)和静息状态的神经元(100kΩ·cm²)。作者发现,有效树突场的形状和大小随R(m)的变化而变化。在高度兴奋的神经元中,通过关闭大部分与胞体功能断开的远端树突分支,有效树突场在空间上缩小。在静息状态下,整个树突场在将电流传递到胞体方面效率很高,但缺乏空间辨别能力。由于大型运动神经元对R(m)上限范围内的变化更敏感,它们比小型运动神经元更早关闭其远端树突。因此,根据背景突触活动收缩或扩张的相同解剖结构可以选择其突触输入的类型。这项研究的结果表明,运动神经元有效树突场的这些重新配置是活动依赖性和几何依赖性的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验