Wittpoth C, Scholich K, Bilyeu J D, Patel T B
Department of Pharmacology, University of Tennessee, The Health Science Center, Memphis, Tennessee 38163, USA.
J Biol Chem. 2000 Aug 25;275(34):25915-9. doi: 10.1074/jbc.M001687200.
Adenylyl cyclase, the enzyme that converts ATP to cAMP, is regulated by its stimulatory and inhibitory GTP-binding proteins, G(s) and G(i), respectively. Recently, we demonstrated that besides catalyzing the synthesis of cAMP, type V adenylyl cyclase (ACV) can act as a GTPase-activating protein for Galpha(s) and also enhance the ability of activated receptors to stimulate GTP-GDP exchange on heterotrimeric G(s) (Scholich, K., Mullenix, J. B., Wittpoth, C., Poppleton, H. M., Pierre, S. C., Lindorfer, M. A., Garrison, J. C., and Patel, T. B. (1999) Science 283, 1328-1331). This latter action of ACV would facilitate the rapid onset of signaling via G(s). Because the C1 region of ACV interacts with the inhibitory GTP-binding protein Galpha(i), we investigated whether the receptor-mediated activation of heterotrimeric G(i) was also regulated by ACV and its subdomains. Our data show that ACV and its C1 domain increased the ability of a muscarinic receptor mimetic peptide (MIII-4) to enhance activation of heterotrimeric G(i) such that the amount of peptide required to stimulate G(i) in steady-state GTPase activity assays was 3-4 orders of magnitude less than without the C1 domain. Additionally, the MIII-4-mediated binding of guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) to G(i) was also markedly increased in the presence of ACV or its C1 domain. In contrast, the C2 domain of ACV was not able to alter either the GTPase activity or the GTPgammaS binding to G(i) in the presence of MIII-4. Furthermore, in adenylyl cyclase assays employing S49 cyc(-) cell membranes, the C1 (but not the C2) domain of ACV enhanced the ability of peptide MIII-4 as well as endogenous somatostatin receptors to activate endogenous G(i) and to inhibit adenylyl cyclase activity. These data demonstrate that adenylyl cyclase and its C1 domain facilitate receptor-mediated activation of G(i).
腺苷酸环化酶是一种将ATP转化为cAMP的酶,分别受其刺激性和抑制性GTP结合蛋白G(s)和G(i)的调节。最近,我们证明除了催化cAMP的合成外,V型腺苷酸环化酶(ACV)还可以作为Gα(s)的GTP酶激活蛋白,并且还能增强活化受体刺激异三聚体G(s)上GTP-GDP交换的能力(Scholich, K., Mullenix, J. B., Wittpoth, C., Poppleton, H. M., Pierre, S. C., Lindorfer, M. A., Garrison, J. C., and Patel, T. B. (1999) Science 283, 1328 - 1331)。ACV的后一种作用将促进通过G(s)的信号快速启动。由于ACV的C1区域与抑制性GTP结合蛋白Gα(i)相互作用,我们研究了受体介导的异三聚体G(i)的激活是否也受ACV及其亚结构域的调节。我们的数据表明,ACV及其C1结构域增加了毒蕈碱受体模拟肽(MIII-4)增强异三聚体G(i)激活的能力,使得在稳态GTP酶活性测定中刺激G(i)所需的肽量比没有C1结构域时少3 - 4个数量级。此外,在ACV或其C1结构域存在的情况下,MIII-4介导的鸟苷5'-(γ-硫代)三磷酸(GTPγS)与G(i)的结合也显著增加。相比之下,在MIII-4存在的情况下,ACV的C2结构域不能改变GTP酶活性或GTPγS与G(i)的结合。此外,在使用S49 cyc(-)细胞膜进行的腺苷酸环化酶测定中,ACV的C1(而非C2)结构域增强了肽MIII-4以及内源性生长抑素受体激活内源性G(i)并抑制腺苷酸环化酶活性的能力。这些数据表明腺苷酸环化酶及其C1结构域促进受体介导的G(i)激活。