Suppr超能文献

血管紧张素II(AT1)受体阻滞剂在高血压治疗中的临床药代动力学

Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension.

作者信息

Israili Z H

机构信息

Emory University School of Medicine, Atlanta, GA 30303, USA.

出版信息

J Hum Hypertens. 2000 Apr;14 Suppl 1:S73-86. doi: 10.1038/sj.jhh.1000991.

Abstract

Angiotensin II receptor blockers (ARBs) represent a new class of effective and well tolerated orally active antihypertensive agents. Recent clinical trials have shown the added benefits of ARBs in hypertensive patients (reduction in left ventricular hypertrophy, improvement in diastolic function, decrease in ventricular arrhythmias, reduction in microalbuminuria, and improvement in renal function), and cardioprotective effect in patients with heart failure. Several large long-term studies are in progress to assess the beneficial effects of ARBs on cardiac hypertrophy, renal function, and cardiovascular and cerebrovascular morbidity and mortality in hypertensive patients with or without diabetes mellitus, and the value of these drugs in patients with heart disease and diabetic nephropathy. The ARBs specifically block the interaction of angiotensin II at the AT1 receptor, thereby relaxing smooth muscle, increasing salt and water excretion, reducing plasma volume, and decreasing cellular hypertrophy. These agents exert their blood pressure-lowering effect mainly by reducing peripheral vascular resistance usually without a rise in heart rate. Most of the commercially available ARBs control blood pressure for 24 h after once daily dosing. Sustained efficacy of blood pressure control, without any evidence of tachyphylaxis, has been demonstrated after long-term administration (3 years) of some of the ARBs. The efficacy of ARBs is similar to that of thiazide diuretics, beta-blockers, angiotensin-converting enzyme inhibitors or calcium channel blockers in patients with similar degree of hypertension. Higher daily doses, dietary salt restriction, and concomitant diuretic or ACE inhibitor administration amplify the antihypertensive effect of ARBs. The ARBs have a low incidence of adverse effects (headache, upper respiratory infection, back pain, muscle cramps, fatigue and dizziness), even in the elderly patients. After the approval of losartan, five other ARBs (candesartan cilexetil, eprosartan, irbesartan, telmisartan, and valsartan) and three combinations with hydrochlorothiazide (irbesartan, losartan and valsartan) have been approved as antihypertensive agents, and some 28 compounds are in various stages of development. The ARBs are non-peptide compounds with varied structures; some (candesartan, losartan, irbesartan, and valsartan) have a common tetrazolo-biphenyl structure. Except for irbesartan, all active ARBs have a carboxylic acid group. Candesartan cilexetil is a prodrug, while losartan has a metabolite (EXP3174) which is more active than the parent drug. No other metabolites of ARBs contribute significantly to the antihypertensive effect. The variation in the molecular structure of the ARBs results in differences in the binding affinity to the receptor and pharmacokinetic profiles. The differences observed in lipid solubility, absorption/distribution, plasma protein binding, bioavailability, biotransformation, plasma half-life, and systemic elimination influence the time of onset, duration of action, and efficacy of the ARBs. On the basis of the daily mg dose, the antihypertensive potency of the ARBs follows the sequence: candesartan cilexetil > telmisartan approximately = losartan > irbesartan approximately = valsartan > eprosartan. After oral administration, the ARBs are rapidly absorbed (time for peak plasma levels = 0.5-4 h) but they have a wide range of bioavailability (from a low of 13% for eprosartan to a high of 60-80% for irbesartan); food does not influence the bioavailability, except for valsartan (a reduction of 40-50%) and eprosartan (increase). A limited dose-peak plasma levels/areas under the plasma level-time curve proportionality is observed for some of the ARBs. Most of these drugs have high plasma protein binding (95-100%); irbesartan has the lowest binding among the group (90%). The steady-state volumes of distribution vary from a low of 9 L (candesartan) to a high of 500 L (telmisartan). (ABSTRACT TRUNCATE

摘要

血管紧张素II受体阻滞剂(ARBs)是一类新型的、口服活性高、耐受性良好的有效抗高血压药物。近期临床试验表明,ARBs对高血压患者具有额外益处(减轻左心室肥厚、改善舒张功能、减少室性心律失常、降低微量白蛋白尿以及改善肾功能),对心力衰竭患者具有心脏保护作用。目前正在进行几项大型长期研究,以评估ARBs对伴有或不伴有糖尿病的高血压患者的心脏肥厚、肾功能以及心脑血管发病率和死亡率的有益影响,以及这些药物在心脏病和糖尿病肾病患者中的价值。ARBs特异性地阻断血管紧张素II与AT1受体的相互作用,从而舒张平滑肌、增加盐和水排泄、降低血容量并减少细胞肥大。这些药物主要通过降低外周血管阻力来发挥降压作用,通常不会引起心率升高。大多数市售的ARBs每日给药一次后可控制血压24小时。长期给药(3年)后,一些ARBs已证明具有持续的血压控制疗效,且无快速耐受性的证据。在高血压程度相似的患者中,ARBs的疗效与噻嗪类利尿剂、β受体阻滞剂、血管紧张素转换酶抑制剂或钙通道阻滞剂相似。增加每日剂量、限制饮食中的盐摄入以及联合使用利尿剂或ACE抑制剂可增强ARBs的降压效果。ARBs的不良反应发生率较低(头痛、上呼吸道感染、背痛、肌肉痉挛、疲劳和头晕),即使在老年患者中也是如此。在氯沙坦获批后,另外五种ARBs(坎地沙坦酯、依普罗沙坦、厄贝沙坦、替米沙坦和缬沙坦)以及三种与氢氯噻嗪的复方制剂(厄贝沙坦、氯沙坦和缬沙坦)已被批准作为抗高血压药物,约有28种化合物正处于不同的研发阶段。ARBs是非肽类化合物,结构各异;有些(坎地沙坦、氯沙坦、厄贝沙坦和缬沙坦)具有共同的四氮唑联苯结构。除厄贝沙坦外,所有活性ARBs都含有一个羧酸基团。坎地沙坦酯是一种前体药物,而氯沙坦有一种代谢产物(EXP3174),其活性比母体药物更强。ARBs的其他代谢产物对降压作用的贡献不大。ARBs分子结构的差异导致其与受体的结合亲和力和药代动力学特征不同。在脂溶性、吸收/分布、血浆蛋白结合、生物利用度、生物转化、血浆半衰期和全身消除方面观察到的差异会影响ARBs的起效时间、作用持续时间和疗效。基于每日毫克剂量,ARBs的降压效力顺序为:坎地沙坦酯>替米沙坦≈氯沙坦>厄贝沙坦≈缬沙坦>依普罗沙坦。口服后,ARBs吸收迅速(血浆峰值水平时间=0.5 - 4小时),但它们的生物利用度范围很广(依普罗沙坦低至13%,厄贝沙坦高至60 - 80%);食物除了对缬沙坦(降低40 - 50%)和依普罗沙坦(增加)的生物利用度有影响外,对其他药物无影响。一些ARBs观察到有限的剂量-血浆峰值水平/血浆水平-时间曲线下面积的比例关系。这些药物大多具有高血浆蛋白结合率(95 - 100%);厄贝沙坦在该组中结合率最低(90%)。稳态分布容积从低至9升(坎地沙坦)到高至500升(替米沙坦)不等。(摘要截断)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验