Suppr超能文献

利用磁共振波谱和容积数据的模式分析对颞叶癫痫(TLE)进行侧化,并将TLE与颞叶外癫痫进行鉴别。

Lateralization of temporal lobe epilepsy (TLE) and discrimination of TLE from extra-TLE using pattern analysis of magnetic resonance spectroscopic and volumetric data.

作者信息

Li L M, Caramanos Z, Cendes F, Andermann F, Antel S B, Dubeau F, Arnold D L

机构信息

Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.

出版信息

Epilepsia. 2000 Jul;41(7):832-42. doi: 10.1111/j.1528-1157.2000.tb00250.x.

Abstract

PURPOSE

To examine whether or not pattern analysis of magnetic resonance volumetric (MRVol) and proton magnetic resonance spectroscopic imaging (1H-MRSI) data would enable (a) the accurate lateralization of temporal lobe epilepsy (TLE) and (b) the discrimination of TLE from extratemporal epilepsy (E-TLE).

METHODS

For lateralization analysis, we used data from 150 nonforeign tissue lesional TLE patients [88 left-sided (L-TLE), 46 right-sided (R-TLE), and 16 bilateral (Bi-TLE)]. For the discrimination of TLE from E-TLE, we used data from 174 patients (145 with unilateral TLE, 14 with unilateral E-TLE, and 15 with widespread epileptogenic zones involving both the TL and extra-TL regions-multilobar epilepsy). A series of "leave-one-out" cross-validated linear discriminant analyses were performed using the MRVol and 1H-MRSI data sets to lateralize TLE and discriminate it from E-TLE.

RESULTS

Lateralization: The leave-one-out linear discriminant analyses were able to correctly lateralize (with a posterior probability >0.50) 120 (90%) of the 134 L-TLE and R-TLE patients. Imposing higher posterior probability (>0.95) increased accuracy of lateralization to 98%, with only two discordant cases who underwent surgery on the side of electroencephalogram, and both had bad outcome. Discrimination: the leave-one-out linear discriminant analyses were able to correctly classify (with a posterior probability >0.50) 142 (89%) of the 159 TLE and E-TLE patients. Accuracy increased slightly as higher posterior probability cutoffs were imposed, with fewer patients being classified.

CONCLUSIONS

Pattern analysis of 1H-MRSI and MRVol data can accurately lateralize TLE. Discriminating TLE from E-TLE was less accurate, probably due to the presence of temporal lobe damage in some patients with E-TLE reflecting dual pathology.

摘要

目的

研究磁共振容积成像(MRVol)和质子磁共振波谱成像(1H-MRSI)数据的模式分析是否能够(a)准确地对颞叶癫痫(TLE)进行定侧,以及(b)将TLE与颞叶外癫痫(E-TLE)区分开来。

方法

对于定侧分析,我们使用了150例非外来组织病变性TLE患者的数据[88例左侧(L-TLE)、46例右侧(R-TLE)和16例双侧(Bi-TLE)]。为了将TLE与E-TLE区分开来,我们使用了174例患者的数据(145例单侧TLE、14例单侧E-TLE和15例涉及颞叶和颞叶外区域的广泛致痫区——多叶癫痫)。使用MRVol和1H-MRSI数据集进行了一系列“留一法”交叉验证线性判别分析,以对TLE进行定侧并将其与E-TLE区分开来。

结果

定侧:“留一法”线性判别分析能够正确定侧(后验概率>0.50)134例L-TLE和R-TLE患者中的120例(90%)。将更高的后验概率(>0.95)作为标准可将定侧准确率提高到98%,只有两例不一致的病例在脑电图所示一侧接受了手术,且两者预后均不佳。区分:“留一法”线性判别分析能够正确分类(后验概率>0.50)159例TLE和E-TLE患者中的142例(89%)。随着更高的后验概率临界值的设定,准确率略有提高,但分类的患者数量减少。

结论

1H-MRSI和MRVol数据的模式分析能够准确地对TLE进行定侧。将TLE与E-TLE区分开来的准确性较低,可能是由于一些E-TLE患者存在颞叶损伤,反映了双重病理情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验