Grafen A
Department of Zoology, University of Oxford, UK.
Proc Biol Sci. 2000 Jun 22;267(1449):1223-7. doi: 10.1098/rspb.2000.1131.
Many approaches to the study of adaptation, following Darwin, centre on the number of offspring of individuals. Population genetics theory makes clear that predicting gene frequency changes requires more detailed knowledge, for example of linkage and linkage disequilibrium and mating systems. Because gene frequency changes underlie adaptation, this can lead to a suspicion that approaches ignoring these sophistications are approximate or tentative or wrong. Stochastic environments and sexual selection are two topics in which there are widespread views that focusing on number of offspring of individuals is not enough, and that proper treatments require the introduction of further details, namely variability in offspring number and linkage disequilibrium, respectively. However, the bulk of empirical research on adaptation and a great deal of theoretical work continue to employ these approaches. Here, a new theoretical development arising from the Price equation provides a formal justification in very general circumstances for focusing on the arithmetic average of the relative number of offspring of individuals.
继达尔文之后,许多关于适应性研究的方法都围绕个体的后代数量展开。群体遗传学理论明确指出,预测基因频率变化需要更详细的知识,例如连锁、连锁不平衡和交配系统等方面的知识。由于基因频率变化是适应性的基础,这可能会让人怀疑那些忽略这些复杂因素的方法是近似的、试探性的或错误的。随机环境和性选择是两个普遍认为仅关注个体后代数量是不够的主题,恰当的处理分别需要引入更多细节,即后代数量的变异性和连锁不平衡。然而,大量关于适应性的实证研究以及许多理论工作仍在继续采用这些方法。在此,由普赖斯方程引发的一项新的理论进展在非常一般的情况下为关注个体后代相对数量的算术平均值提供了形式上的依据。