Veldhuis J D, Roemmich J N, Rogol A D
Department of Internal Medicine, Center for Biomathematical Technology, University of Virginia Health Sciences Center, Charlottesville 22908, USA.
J Clin Endocrinol Metab. 2000 Jul;85(7):2385-94. doi: 10.1210/jcem.85.7.6697.
Although numerous studies have delineated an impact of gender on the neuroendocrine control of GH secretion in the adult, few investigations have defined the nature and extent of sex differences before puberty. This deficit reflects jointly the sensitivity limitations of earlier GH assays and the paucity of intensive sampling protocols in healthy children. Here we have applied a chemiluminescence-based GH assay (sensitivity, 0.005 microg/L) to study GH release in blood sampled every 10 min for 12 h from 1800-0600 h in 58 healthy children. Males and females were evaluated in prepuberty (n = 17 boys; n = 11 girls) and late adolescence (n = 13 males; n = 17 females). We quantitated the principal regulated facets of GH release by 1) deconvolution analysis to assess basal vs. pulsatile GH secretion, 2) approximate entropy to compute the regularity of GH release patterns, and 3) cosine regression analysis to evaluate the overnight rhythmic release of GH. Gender by maturation analysis of variance revealed a mean 2.3-fold increase in the integrated serum GH concentration between prepuberty and late adolescence (P < 10(-6)). Deconvolution analysis disclosed that 91-97% of total GH secretion was pulsatile. Pulsatile, but not basal, GH release showed marked sexual maturation dependence (P < 10(-5)). Pulsatile GH release rose in adolescents due to a 2.25-fold greater GH secretory burst mass (P = 0.00011), which reflected joint 1.5-fold increases in GH secretory pulse amplitude and duration (P < 0.01). Pulse-mass enhancement across puberty was gender independent, but mechanistically specific, as GH pulse frequency, intersecretory burst interval, and half-life were invariant of pubertal status. The approximate entropy statistic identified more disorderly GH secretion patterns in adolescent females compared with prepubertal children and adolescent males (P = 0.00074). Cosinor analysis unmasked elevated overnight rhythms in GH secretory burst mass and interburst intervals in late adolescents of both genders compared with prepubertal boys (for burst mass) or girls (for interburst intervals). Linear regression analysis disclosed strong correlations among 1) the plasma insulin-like growth factor I concentration and GH secretory burst mass (P < 10(-3)), 2) the GH pulse mass and the serum testosterone concentration (P = 10(-3)), 3) the irregularity (entropy) of GH secretory patterns and the serum estradiol concentration (P < 10(-4)), and 4) the basal GH secretion rate and the serum estradiol concentration (P = 10(-2)). In summary, healthy prepubertal children and late adolescent boys and girls manifest distinctive mechanisms controlling GH release, as appraised for all three of the pulsatile, entropic, and 12-h rhythmic modes of GH neuroregulation. The major maturational contrast in the pulsatile mode of GH secretion is amplified secretory burst mass in adolescents due to jointly heightened GH pulse amplitude and duration. The dominant gender distinction lies in the reduced orderliness of GH release patterns in late adolescent girls. Overnight rhythms in GH secretory burst mass and interburst intervals enlarge in both sexes at adolescence, thus signaling enhanced coupling between the rhythmic and pulsatile control of GH release at this time. At the extrema of pubertal development, sex steroid hormones are associated differentially with specific facets of GH release, e.g. an elevated basal GH secretion rate (estrogen), greater irregularity of GH release patterns (estrogen), and amplified GH secretory burst mass and higher plasma insulin-like growth factor I concentrations (testosterone). Accordingly, we postulate that sex steroids supervise selectively each of the dominant facets of GH neurosecretory control across human puberty.
尽管众多研究已阐明性别对成年人生长激素(GH)分泌的神经内分泌控制的影响,但很少有研究明确青春期前性别差异的性质和程度。这一不足共同反映了早期GH检测方法的灵敏度限制以及健康儿童密集采样方案的匮乏。在此,我们应用基于化学发光的GH检测方法(灵敏度为0.005μg/L),对58名健康儿童在18:00至06:00期间每10分钟采集一次血液,共采集12小时,以研究GH释放情况。对青春期前(男孩17名;女孩11名)和青春期后期(男性13名;女性17名)的男性和女性进行了评估。我们通过以下方式对GH释放的主要调节方面进行了定量分析:1)反卷积分析以评估基础GH分泌与脉冲式GH分泌;2)近似熵计算GH释放模式的规律性;3)余弦回归分析评估GH的夜间节律性释放。性别×成熟度方差分析显示,青春期前至青春期后期血清GH综合浓度平均增加2.3倍(P < 10⁻⁶)。反卷积分析表明,总GH分泌的91% - 97%是脉冲式的。脉冲式而非基础GH释放显示出明显的性成熟依赖性(P < 10⁻⁵)。青少年的脉冲式GH释放增加是由于GH分泌突发量增加了2.25倍(P = 0.00011),这反映出GH分泌脉冲幅度和持续时间联合增加了1.5倍(P < 0.01)。青春期期间脉冲量的增加与性别无关,但在机制上具有特异性,因为GH脉冲频率、分泌间期突发间隔和半衰期与青春期状态无关。近似熵统计显示,与青春期前儿童和青少年男性相比,青春期女性的GH分泌模式更无序(P = 0.00074)。余弦分析表明,与青春期前男孩(针对突发量)或女孩(针对突发间隔)相比,青春期后期两性的GH分泌突发量和突发间隔的夜间节律均升高。线性回归分析显示,以下各项之间存在强相关性:1)血浆胰岛素样生长因子I浓度与GH分泌突发量(P < 10⁻³);2)GH脉冲量与血清睾酮浓度(P = 10⁻³);3)GH分泌模式的不规则性(熵)与血清雌二醇浓度(P < 10⁻⁴);4)基础GH分泌率与血清雌二醇浓度(P = 10⁻²)。总之,健康的青春期前儿童以及青春期后期的男孩和女孩表现出控制GH释放的独特机制,这在GH神经调节的脉冲式、熵和12小时节律模式这三个方面均得到评估。GH分泌脉冲式模式的主要成熟差异在于青少年的分泌突发量增加,这是由于GH脉冲幅度和持续时间共同增加所致。主要的性别差异在于青春期后期女孩GH释放模式的有序性降低。青春期时,两性的GH分泌突发量和突发间隔的夜间节律均增大,这表明此时GH释放的节律性和脉冲式控制之间的耦合增强。在青春期发育的极端阶段,性类固醇激素与GH释放的特定方面存在差异关联,例如基础GH分泌率升高(雌激素)、GH释放模式的不规则性增加(雌激素)以及GH分泌突发量增加和血浆胰岛素样生长因子I浓度升高(睾酮)。因此,我们推测性类固醇激素在人类青春期对GH神经分泌控制的每个主要方面进行选择性调节。