Suppr超能文献

The structure-function relationship of functionally distinct but structurally similar hexose transporters from Trypanosoma congolense.

作者信息

Vedrenne C, Bringaud F, Barrett M P, Tetaud E, Baltz T

机构信息

Laboratoire de Parasitologie Moléculaire, Université Victor Ségalen de Bordeaux II, France.

出版信息

Eur J Biochem. 2000 Aug;267(15):4850-60. doi: 10.1046/j.1432-1327.2000.01543.x.

Abstract

We have previously characterized, in Trypanosoma brucei, a multigene family encoding two developmentally regulated glucose transporters that are 80% identical at the amino-acid level. We report here the characterization of the homologous glucose transporters (TcoHT1 and TcoHT2) in Trypanosoma congolense, an African trypanosome responsible for disease in domestic animals. Both TcoHT isoforms, which are 92.4% identical, are encoded by a single cluster of genes containing two copies of TcoHT1 and three copies of TcoHT2 arranged alternately. Northern blot analysis revealed that TcoHT2 is expressed in all of the adaptive forms, while mRNA encoding TcoHT1 is only present in the metacyclic and bloodstream forms of T. congolense. When transfected with the TcoHT2 gene, Chinese Hamster Ovary cells express a hexose transporter with properties similar to those of the T. congolense procyclic forms (Km D-glucose = 41 microM versus 64 microM). In contrast to TcoHT2, TcoHT1 expressed in the Chinese hamster ovary cells appeared to be a relatively low affinity glucose transporter (Ki D-glucose = 0.8 mM). To determine the region(s) involved in the different apparent affinities for glucose, a chimera analysis was undertaken on the TcoHT isoforms. This study shows that amino-acid residues important for D-glucose recognition are located in the central region (between transmembrane domains 3 and 7) and in the C-terminal intracellular domain of TcoHT2. Site directed mutagenesis identified Ser193 located within transmembrane helix 4 as a key residue in relaxing the apparent affinity of TcoHT1 for glucose.

摘要

相似文献

2
Glucose uptake in Trypanosoma vivax and molecular characterization of its transporter gene.
Eur J Biochem. 1996 Apr 1;237(1):234-9. doi: 10.1111/j.1432-1033.1996.0234n.x.
3
Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2.
Biochem J. 1995 Dec 15;312 ( Pt 3)(Pt 3):687-91. doi: 10.1042/bj3120687.
4
Hexose uptake in Trypanosoma cruzi: structure-activity relationship between substrate and transporter.
Biochem J. 1996 Jul 15;317 ( Pt 2)(Pt 2):353-9. doi: 10.1042/bj3170353.
5
Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi.
Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8278-82. doi: 10.1073/pnas.91.17.8278.
7
Analysis of expressed sequence tags from the four main developmental stages of Trypanosoma congolense.
Mol Biochem Parasitol. 2009 Nov;168(1):34-42. doi: 10.1016/j.molbiopara.2009.06.004. Epub 2009 Jun 25.
10
Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei.
Mol Cell Biol. 1993 Feb;13(2):1146-54. doi: 10.1128/mcb.13.2.1146-1154.1993.

引用本文的文献

1
On the evolution of hexose transporters in kinetoplastid Protozoans [corrected].
PLoS One. 2012;7(5):e36303. doi: 10.1371/journal.pone.0036303. Epub 2012 May 2.
2
Niche metabolism in parasitic protozoa.
Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):101-18. doi: 10.1098/rstb.2005.1756.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验