Suppr超能文献

DNA双交叉组装体中的稳健电荷传输。

Robust charge transport in DNA double crossover assemblies.

作者信息

Odom D T, Dill E A, Barton J K

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.

出版信息

Chem Biol. 2000 Jul;7(7):475-81. doi: 10.1016/s1074-5521(00)00133-2.

Abstract

BACKGROUND

Multiple-stranded DNA assemblies, encoded by sequence, have been constructed in an effort to self-assemble nanodevices of defined molecular architecture. Double-helical DNA has been probed also as a molecular medium for charge transport. Conductivity studies suggest that DNA displays semiconductor properties, whereas biochemical studies have shown that oxidative damage to B-DNA at the 5'-G of a 5'-GG-3' doublet can occur by charge transport through DNA up to 20 nm from a photo-excited metallointercalator. The possible application of DNA assemblies, in particular double crossover (DX) molecules, in electrical nanodevices prompted the design of a DNA DX assembly with oxidatively sensitive guanine moieties and a tethered rhodium photo-oxidant strategically placed to probe charge transport.

RESULTS

DX assemblies support long-range charge transport selectively down the base stack bearing the intercalated photo-oxidant. Despite tight packing, no electron transfer (ET) crossover to the adjacent base stack is observed. Moreover, the base stack of a DX assembly is well-coupled and less susceptible than duplex DNA to stacking perturbations. Introducing a double mismatch along the path for charge transport entirely disrupts long-range ET in duplex DNA, but only marginally decreases it in the analogous stack within DX molecules.

CONCLUSIONS

The path for charge transport in a DX DNA assembly is determined directly by base stacking. As a result, the two closely packed stacks within this assembly are electronically insulated from one another. Therefore, DX DNA assemblies may serve as robust, insulated conduits for charge transport in nanoscale devices.

摘要

背景

为了自组装具有确定分子结构的纳米器件,人们构建了由序列编码的多链DNA组件。双链DNA也被用作电荷传输的分子介质进行了研究。电导率研究表明DNA具有半导体特性,而生化研究表明,在5'-GG-3'双链体的5'-G处,B-DNA的氧化损伤可通过电荷在距光激发金属嵌入剂20 nm范围内的DNA中传输而发生。DNA组件,特别是双交叉(DX)分子在电子纳米器件中的潜在应用促使人们设计一种具有氧化敏感鸟嘌呤基团和策略性放置的连接铑光氧化剂的DNA DX组件,以探测电荷传输。

结果

DX组件支持电荷在带有嵌入光氧化剂的碱基堆积中选择性地进行长距离传输。尽管堆积紧密,但未观察到电子转移(ET)交叉到相邻的碱基堆积中。此外,DX组件的碱基堆积耦合良好,比双链DNA更不易受到堆积扰动的影响。沿着电荷传输路径引入双错配会完全破坏双链DNA中的长距离ET,但在DX分子内的类似堆积中只会使其略有降低。

结论

DX DNA组件中的电荷传输路径直接由碱基堆积决定。因此,该组件内的两个紧密堆积的堆积在电子上彼此绝缘。因此,DX DNA组件可作为纳米级器件中电荷传输的坚固、绝缘管道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验