Dave N, Troullier A, Mus-Veteau I, Duñach M, Leblanc G, Padrós E
Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain.
Biophys J. 2000 Aug;79(2):747-55. doi: 10.1016/S0006-3495(00)76332-6.
The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent.
利用傅里叶变换红外光谱法,对来自大肠杆菌的蜜二糖通透酶的结构进行了研究,所使用的纯化转运蛋白处于溶解状态或重构于大肠杆菌脂质中。在这两种情况下,光谱表明通透酶的二级结构主要由α-螺旋成分(高达50%)主导,包含β-结构(20%)以及归属于转角、3(10)螺旋和非有序结构的其他成分(30%)。在1660和1653 cm⁻¹处记录到两个不同且强烈的吸收带,即在膜蛋白螺旋通常的吸收范围内。此外,保持转运蛋白功能的条件(重构于脂质体中或用十二烷基麦芽糖苷溶解)使得检测到两条强度相当的单独α-螺旋带成为可能。相比之下,从处于Triton X-100中的无活性通透酶记录到一条以约1656 cm⁻¹为中心的单一强吸收带,或者在溶解的蛋白于十二烷基麦芽糖苷中加热后记录到一个合并且更宽的信号。有人提出,在功能性通透酶中,1660和1653 cm⁻¹处的不同信号源自α-螺旋结构域的两个不同群体。此外,钠和/或蜜二糖诱导的酰胺I线形变化,特别是1660和1653 cm⁻¹带的相对振幅变化,表明在糖转运的早期步骤中二级结构发生了改变。最后,大约80%的主链酰胺质子能够交换这一观察结果表明膜结构域具有高构象灵活性和/或对水性溶剂具有高可及性。