Perrin A, Flaud J, Smirnov M, Lock M
Laboratoire de Photophysique Moléculaire, CNRS, Bat. 210, Orsay Cedex, F-91405, France
J Mol Spectrosc. 2000 Sep;203(1):175-187. doi: 10.1006/jmsp.2000.8171.
Using new high-resolution Fourier transform spectra recorded in Giessen in the 8-12 µm region, a more extended analysis of the nu(5) and nu(6) bands and the first high-resolution study of the nu(4) band of HDCO were performed. As pointed out previously [M. Allegrini, J. W. C. Johns, and A. R. W. McKellar, Can. J. Phys. 56, 859-864 (1978)], the energy levels of the 5(1) and 6(1) states are strongly coupled by A- and B-type Coriolis interactions. On the other hand, it appeared that weaker resonances involving the energy levels of the 4(1) state with those of the 5(1) and 6(1) states also had to be accounted for. Consequently, the calculation of the energy levels was performed taking into account the Coriolis-type resonances linking the energy levels of the {6(1), 5(1), 4(1)} resonating states. Because of the unusually strong Coriolis interaction between nu(5) and nu(6), a nonclassical behavior of the rotational levels of the 5(1) and 6(1) states was observed and it was necessary to use a new Hamiltonian matrix which possesses, as usual, both A- and B-type Coriolis operators in the 5(1) if 6(1) and 6(1) if 4(1) off diagonal blocks but differs from the classical reduced Hamiltonian which is used commonly for planar C(s)-type molecules. More precisely, it proved necessary to include non-orthorhombic terms in the expansion of the rotational Hamiltonian of the 5(1) and 6(1) states. According to the considerations developed by Watson [J. K. G. Watson, in "Vibrational Spectra and Structure," (J. Durig, Ed.), Chap. 1, Elsevier, Amsterdam, 1977], these non-orthorhombic operators which are not symmetry forbidden are usually removed for semirigid C(s)-type molecules by rotational contact transformations. In the present study, the occurrence of terms in {J(x), J(z)} in the expansions of the rotational Hamiltonians for the 5(1) and 6(1) states indicates that the inertial system of HDCO differs for each of the three {6(1), 5(1), 4(1)} resonating states. Therefore, HDCO becomes a good example of vibrational-induced rotational axis switching (VIRAS) which was already suggested as the mechanism responsible for the enhanced densities of coupled states observed in 2-fluoroethanol [H. Li, S. Erza, and L. A. Philips, J. Chem. Phys. 97, 5956-5963 (1992)]. Copyright 2000 Academic Press.
利用在吉森记录的8 - 12微米区域的新高分辨率傅里叶变换光谱,对HDCO的ν(5)和ν(6)带进行了更深入的分析,并对ν(4)带进行了首次高分辨率研究。如先前所述[M. 阿莱格里尼、J. W. C. 约翰斯和A. R. W. 麦凯勒,《加拿大物理学杂志》56, 859 - 864 (1978)],5(1)和6(1)态的能级通过A - 型和B - 型科里奥利相互作用强烈耦合。另一方面,似乎还必须考虑涉及4(1)态与5(1)和6(1)态能级的较弱共振。因此,在计算能级时考虑了连接{6(1), 5(1), 4(1)}共振态能级的科里奥利型共振。由于ν(5)和ν(6)之间异常强烈的科里奥利相互作用,观察到5(1)和6(1)态转动能级的非经典行为,并且有必要使用一个新的哈密顿矩阵,该矩阵通常在5(1)与6(1)以及6(1)与4(1)的非对角块中同时包含A - 型和B - 型科里奥利算符,但与通常用于平面C(s)型分子的经典简化哈密顿量不同。更确切地说,事实证明有必要在5(1)和6(1)态的转动哈密顿量展开式中包含非正交项。根据沃森提出的观点[J. K. G. 沃森《振动光谱与结构》(J. 杜里格编)第1章,爱思唯尔出版社,阿姆斯特丹,1977],对于半刚性C(s)型分子,这些并非对称性禁戒的非正交算符通常通过转动接触变换去除。在本研究中,5(1)和6(1)态的转动哈密顿量展开式中出现{J(x), J(z)}项表明,对于三个{6(1), 5(1), 4(1)}共振态中的每一个,HDCO的惯性系都不同。因此,HDCO成为振动诱导转动轴切换(VIRAS)(已被认为是导致在2 - 氟乙醇中观察到的耦合态密度增强的机制)的一个很好的例子[H. 李、S. 埃尔扎和L. A. 菲利普斯,《化学物理杂志》97, 5956 - 5963 (1992)]。版权所有2000年学术出版社。