Suppr超能文献

蛋白激酶抑制剂H89揭示蛋白激酶在双向内质网至高尔基体转运调节中的潜在作用。

Potential role for protein kinases in regulation of bidirectional endoplasmic reticulum-to-Golgi transport revealed by protein kinase inhibitor H89.

作者信息

Lee T H, Linstedt A D

机构信息

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Mol Biol Cell. 2000 Aug;11(8):2577-90. doi: 10.1091/mbc.11.8.2577.

Abstract

Recent evidence suggests a regulatory connection between cell volume, endoplasmic reticulum (ER) export, and stimulated Golgi-to-ER transport. To investigate the potential role of protein kinases we tested a panel of protein kinase inhibitors for their effect on these steps. One inhibitor, H89, an isoquinolinesulfonamide that is commonly used as a selective protein kinase A inhibitor, blocked both ER export and hypo-osmotic-, brefeldin A-, or nocodazole-induced Golgi-to-ER transport. In contrast, H89 did not block the constitutive ER Golgi-intermediate compartment (ERGIC)-to-ER and Golgi-to-ER traffic that underlies redistribution of ERGIC and Golgi proteins into the ER after ER export arrest. Surprisingly, other protein kinase A inhibitors, KT5720 and H8, as well as a set of protein kinase C inhibitors, had no effect on these transport processes. To test whether H89 might act at the level of either the coatomer protein (COP)I or the COPII coat protein complex we examined the localization of betaCOP and Sec13 in H89-treated cells. H89 treatment led to a rapid loss of Sec13-labeled ER export sites but betaCOP localization to the Golgi was unaffected. To further investigate the effect of H89 on COPII we developed a COPII recruitment assay with permeabilized cells and found that H89 potently inhibited binding of exogenous Sec13 to ER export sites. This block occurred in the presence of guanosine-5'-O-(3-thio)triphosphate, suggesting that Sec13 recruitment is inhibited at a step independent of the activation of the GTPase Sar1. These results identify a requirement for an H89-sensitive factor(s), potentially a novel protein kinase, in recruitment of COPII to ER export sites, as well as in stimulated but not constitutive Golgi-to-ER transport.

摘要

近期证据表明,细胞体积、内质网(ER)输出以及受刺激的高尔基体到内质网的转运之间存在调控联系。为了研究蛋白激酶的潜在作用,我们测试了一组蛋白激酶抑制剂对这些步骤的影响。一种抑制剂H89,一种常用作选择性蛋白激酶A抑制剂的异喹啉磺酰胺,阻断了内质网输出以及低渗、布雷菲德菌素A或诺考达唑诱导的高尔基体到内质网的转运。相比之下,H89并未阻断内质网-高尔基体中间区室(ERGIC)到内质网以及高尔基体到内质网的组成型转运,这种转运是内质网输出受阻后ERGIC和高尔基体蛋白重新分布到内质网的基础。令人惊讶的是,其他蛋白激酶A抑制剂KT5720和H8,以及一组蛋白激酶C抑制剂,对这些转运过程没有影响。为了测试H89是否可能作用于衣被蛋白(COP)I或COPII衣被蛋白复合物水平,我们检测了H89处理细胞中βCOP和Sec13的定位。H89处理导致Sec13标记的内质网输出位点迅速丧失,但βCOP在高尔基体的定位未受影响。为了进一步研究H89对COPII的影响,我们开发了一种用通透细胞进行的COPII募集试验,发现H89强烈抑制外源Sec13与内质网输出位点的结合。这种阻断在鸟苷-5'-O-(3-硫代)三磷酸存在的情况下发生,表明Sec13的募集在一个独立于GTP酶Sar1激活的步骤中受到抑制。这些结果表明,在COPII募集到内质网输出位点以及受刺激而非组成型的高尔基体到内质网的转运过程中,需要一种对H89敏感的因子,可能是一种新型蛋白激酶。

相似文献

4
Maintenance of Golgi structure and function depends on the integrity of ER export.
J Cell Biol. 2001 Nov 12;155(4):557-70. doi: 10.1083/jcb.200107045.
6
Capacity of the golgi apparatus for biogenesis from the endoplasmic reticulum.
Mol Biol Cell. 2003 Dec;14(12):5011-8. doi: 10.1091/mbc.e03-06-0437. Epub 2003 Oct 17.

引用本文的文献

1
Dynamic regulation of Sec24C by phosphorylation and O-GlcNAcylation during cell cycle progression.
J Biol Chem. 2025 Jul 3;301(8):110456. doi: 10.1016/j.jbc.2025.110456.
2
High-intensity light disrupts intracellular organelle dynamics via microtubule depolymerization.
Sci Rep. 2025 Jul 1;15(1):20888. doi: 10.1038/s41598-025-04434-1.
4
PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation.
J Cell Biol. 2025 May 5;224(5). doi: 10.1083/jcb.202407166. Epub 2025 Apr 11.
5
Endoplasmic reticulum exit sites are segregated for secretion based on cargo size.
Dev Cell. 2024 Oct 7;59(19):2593-2608.e6. doi: 10.1016/j.devcel.2024.06.009. Epub 2024 Jul 10.
7
The Small Molecule H89 Inhibits Inclusion Growth and Production of Infectious Progeny.
Infect Immun. 2021 Jun 16;89(7):e0072920. doi: 10.1128/IAI.00729-20.
8
Export Control: Post-transcriptional Regulation of the COPII Trafficking Pathway.
Front Cell Dev Biol. 2021 Jan 12;8:618652. doi: 10.3389/fcell.2020.618652. eCollection 2020.
9
Models of Intracellular Transport: Pros and Cons.
Front Cell Dev Biol. 2019 Aug 7;7:146. doi: 10.3389/fcell.2019.00146. eCollection 2019.
10
Golgi Structure and Function in Health, Stress, and Diseases.
Results Probl Cell Differ. 2019;67:441-485. doi: 10.1007/978-3-030-23173-6_19.

本文引用的文献

1
Golgi membranes are absorbed into and reemerge from the ER during mitosis.
Cell. 1999 Dec 10;99(6):589-601. doi: 10.1016/s0092-8674(00)81548-2.
7
Dynamics of the interphase mammalian Golgi complex as revealed through drugs producing reversible Golgi disassembly.
Biochim Biophys Acta. 1998 Aug 14;1404(1-2):127-37. doi: 10.1016/s0167-4889(98)00053-6.
10
Retrograde transport of Golgi-localized proteins to the ER.
J Cell Biol. 1998 Jan 12;140(1):1-15. doi: 10.1083/jcb.140.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验