Suppr超能文献

接种雪旺细胞的聚合物泡沫导管促进周围神经的引导性再生。

A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

作者信息

Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti J P

机构信息

Department of Otology and Laryngology, Harvard Medical School Boston, Massachusetts, USA.

出版信息

Tissue Eng. 2000 Apr;6(2):119-27. doi: 10.1089/107632700320748.

Abstract

Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft axonal regeneration compared with autografts (n = 6). At 6 weeks, axonal regeneration was observed in the midconduit region of all five channels in each experimental animal. The cross-sectional area comprising axons relative to the open conduit cross sectional area (mean 26.3%, SD 10. 1%) compared favorably with autografts (mean 23.8%, SD 3.6%). Our methodology can be used to create polymer foam conduits containing longitudinally aligned channels, to introduce Schwann cells into them, and to implant them into surgically created neural defects. These conduits provide an environment permissive to axonal regeneration. Furthermore, this polymer foam-processing method and unique channeled architecture allows the introduction of neurotrophic factors into the conduit in a controlled fashion. Deposition of different factors into distinct regions within the conduit may be possible to promote more precisely guided neural regeneration.

摘要

长期以来,人们一直在寻找自体移植物的替代物用于桥接神经间隙。虽然已经研究了许多神经导管材料,但与自体移植物相比,结果普遍令人失望。本研究的目的是设计一种更有效的神经引导导管,将雪旺细胞引入导管,并在体内模型中确定其再生能力。设计并制造了一种新型的、完全可生物降解的聚合物导管用于周围神经修复,该导管近似于天然周围神经的宏观和微观结构。它由一系列纵向排列的通道组成,直径范围为60至550微米。管腔内表面促进雪旺细胞的黏附,已知雪旺细胞的存在在神经再生中起关键作用。这种独特的通道结构使雪旺细胞黏附的可用表面积比简单的中空导管增加了五倍。该导管由乳酸和乙醇酸的高分子量共聚物(PLGA)(分子量130,000)以85:15的单体比例组成。采用一种新型的泡沫加工技术,即低压注射成型,来制造具有连续纵向通道的高度多孔导管(孔隙体积约90%)。使用该技术构建了包含1、5、16、45个或更多纵向排列通道的导管。在这些导管进行细胞接种之前,将泡沫用50%乙醇预湿,用生理盐水冲洗,并涂覆层粘连蛋白溶液(10微克/毫升)。使用简单的生物反应器流动回路,以5×10⁵个细胞/毫升的浓度将雪旺细胞悬液动态引入这些处理过的泡沫中。进行了体内再生研究,将载有细胞的五通道聚合物导管(单个通道内径500微米,总导管外径2.3毫米)植入大鼠坐骨神经7毫米的间隙处(n = 4),并将移植中部的轴突再生与自体移植物(n = 6)进行比较。在6周时,在每只实验动物的所有五个通道的导管中部区域均观察到轴突再生。与自体移植物相比,包含轴突的横截面积相对于开放导管横截面积的比例(平均26.3%,标准差10.1%)具有优势(平均23.8%,标准差3.6%)。我们的方法可用于制造包含纵向排列通道的聚合物泡沫导管,将雪旺细胞引入其中,并将其植入手术造成的神经缺损处。这些导管提供了一个有利于轴突再生的环境。此外,这种聚合物泡沫加工方法和独特的通道结构允许以可控的方式将神经营养因子引入导管。将不同的因子沉积到导管内的不同区域可能有助于促进更精确引导的神经再生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验