Ota S, Li W H
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
Mol Biol Evol. 2000 Sep;17(9):1401-9. doi: 10.1093/oxfordjournals.molbev.a026423.
In the reconstruction of a large phylogenetic tree, the most difficult part is usually the problem of how to explore the topology space to find the optimal topology. We have developed a "divide-and-conquer" heuristic algorithm in which an initial neighbor-joining (NJ) tree is divided into subtrees at internal branches having bootstrap values higher than a threshold. The topology search is then conducted by using the maximum-likelihood method to reevaluate all branches with a bootstrap value lower than the threshold while keeping the other branches intact. Extensive simulation showed that our simple method, the neighbor-joining maximum-likelihood (NJML) method, is highly efficient in improving NJ trees. Furthermore, the performance of the NJML method is nearly equal to or better than existing time-consuming heuristic maximum-likelihood methods. Our method is suitable for reconstructing relatively large molecular phylogenetic trees (number of taxa >/= 16).
在构建大型系统发育树时,最困难的部分通常是如何探索拓扑空间以找到最优拓扑结构的问题。我们开发了一种“分而治之”启发式算法,其中初始的邻接法(NJ)树在自展值高于阈值的内部分支处被划分为子树。然后使用最大似然法对自展值低于阈值的所有分支进行重新评估,同时保持其他分支不变,从而进行拓扑搜索。大量模拟表明,我们的简单方法,即邻接最大似然法(NJML),在改进NJ树方面非常高效。此外,NJML方法的性能几乎等于或优于现有的耗时启发式最大似然方法。我们的方法适用于重建相对较大的分子系统发育树(分类单元数量≥16)。