Suppr超能文献

Identification of basic residues involved in drug export function of human multidrug resistance-associated protein 2.

作者信息

Ryu S, Kawabe T, Nada S, Yamaguchi A

机构信息

Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.

出版信息

J Biol Chem. 2000 Dec 15;275(50):39617-24. doi: 10.1074/jbc.M005149200.

Abstract

Multidrurg resistance-associated protein 2 (MRP2)/canalicular multispecific organic anion transporter (cMOAT) is involved in the ATP-dependent export of organic anions across the bile canalicular membrane. To identify functional amino acid residues that play essential roles in the substrate transport, each of 13 basic residues around transmembrane regions (TMs) 6-17 were replaced with alanine. Wild type and mutant proteins were expressed in COS-7 cells, and the transport activity was measured as the excretion of glutathione-methylfluorescein. Four mutants, K324A (TM6), K483A (TM9), R1210A (TM16), and R1257A (TM17), showed decreased transport activity, and another mutant, K578A (TM11), showed decreased protein expression. These five mutants were normally delivered to the cell surface similar to the other fully active mutants and wild type MRP2. The importance of TM6, TM16, and TM17 in the transport function of MRP2 is consistent with the previous observation indicating the importance of the corresponding TM1, TM11, and TM12 on P-glycoprotein (Loo, T. W., and Clarke, D. M. (1999) J. Biol. Chem. 274, 35388-35392). Another observation that MRP2 inhibitor, cyclosporine A, failed to inhibit R1230A specifically, indicated the existence of its binding site within TM16.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验