Jennings I G, Cotton R G, Kobe B
Structural Biology Laboratory, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
Eur J Hum Genet. 2000 Sep;8(9):683-96. doi: 10.1038/sj.ejhg.5200518.
Phenylalanine hydroxylase (PAH) is the enzyme that converts phenylalanine to tyrosine as a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. Over 300 mutations have been identified in the gene encoding PAH that result in a deficient enzyme activity and lead to the disorders hyperphenylalaninaemia and phenylketonuria. The determination of the crystal structure of PAH now allows the determination of the structural basis of mutations resulting in PAH deficiency. We present an analysis of the structural basis of 120 mutations with a 'classified' biochemical phenotype and/or available in vitro expression data. We find that the mutations can be grouped into five structural categories, based on the distinct expected structural and functional effects of the mutations in each category. Missense mutations and small amino acid deletions are found in three categories: 'active site mutations', 'dimer interface mutations', and 'domain structure mutations'. Nonsense mutations and splicing mutations form the category of 'proteins with truncations and large deletions'. The final category, 'fusion proteins', is caused by frameshift mutations. We show that the structural information helps formulate some rules that will help predict the likely effects of unclassified and newly discovered mutations: proteins with truncations and large deletions, fusion proteins and active site mutations generally cause severe phenotypes; domain structure mutations and dimer interface mutations spread over a range of phenotypes, but domain structure mutations in the catalytic domain are more likely to be severe than domain structure mutations in the regulatory domain or dimer interface mutations.
苯丙氨酸羟化酶(PAH)是一种将苯丙氨酸转化为酪氨酸的酶,这是苯丙氨酸分解代谢以及蛋白质和神经递质生物合成过程中的限速步骤。在编码PAH的基因中已鉴定出300多种突变,这些突变会导致酶活性不足,并引发高苯丙氨酸血症和苯丙酮尿症等疾病。PAH晶体结构的确定现在使得能够确定导致PAH缺乏的突变的结构基础。我们对120种具有“分类”生化表型和/或可用体外表达数据的突变的结构基础进行了分析。我们发现,根据每类突变预期的不同结构和功能效应,这些突变可分为五个结构类别。错义突变和小氨基酸缺失存在于三个类别中:“活性位点突变”、“二聚体界面突变”和“结构域结构突变”。无义突变和剪接突变形成“截短和大缺失的蛋白质”类别。最后一类“融合蛋白”是由移码突变引起的。我们表明,结构信息有助于制定一些规则,这些规则将有助于预测未分类和新发现突变的可能影响:截短和大缺失的蛋白质、融合蛋白和活性位点突变通常会导致严重的表型;结构域结构突变和二聚体界面突变涵盖一系列表型,但催化结构域中的结构域结构突变比调节结构域中的结构域结构突变或二聚体界面突变更可能是严重的。