D'Angelo I, Raffaelli N, Dabusti V, Lorenzi T, Magni G, Rizzi M
Department of Genetics and Microbiology 'A. Buzzati Traverso', University of Pavia, via Ferrata 1, 27100, Pavia, Italy.
Structure. 2000 Sep 15;8(9):993-1004. doi: 10.1016/s0969-2126(00)00190-8.
Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in fundamental processes in cell metabolism. The enzyme nicotinamide mononucleotide adenylyltransferase (NMN AT) plays a key role in NAD(+) biosynthesis, catalysing the condensation of nicotinamide mononucleotide and ATP, and yielding NAD(+) and pyrophosphate. Given its vital role in cell life, the enzyme represents a possible target for the development of new antibacterial agents.
The structure of NMN AT from Methanococcus jannaschii in complex with ATP has been solved by X-ray crystallography at 2.0 A resolution, using a combination of single isomorphous replacement and density modification techniques. The structure reveals a hexamer with 32 point group symmetry composed of alpha/beta topology subunits. The catalytic site is located in a deep cleft on the surface of each subunit, where one ATP molecule and one Mg(2+) are observed. A strictly conserved HXGH motif (in single-letter amino acid code) is involved in ATP binding and recognition.
The structure of NMN AT closely resembles that of phosphopantetheine adenylyltransferase. Remarkably, in spite of the fact that the two enzymes share the same fold and hexameric assembly, a striking difference in their quaternary structure is observed. Moreover, on the basis of structural similarity including the HXGH motif, we identify NMN AT as a novel member of the newly proposed superfamily of nucleotidyltransferase alpha/beta phosphodiesterases. Our structural data suggest that the catalytic mechanism does not rely on the direct involvement of any protein residues and is likely to be carried out through optimal positioning of substrates and transition-state stabilisation, as is proposed for other members of the nucleotidyltransferase alpha/beta phosphodiesterase superfamily.
烟酰胺腺嘌呤二核苷酸(NAD(+))是细胞代谢基本过程中所涉及的一种必需辅因子。烟酰胺单核苷酸腺苷酸转移酶(NMNAT)在NAD(+)生物合成中起关键作用,催化烟酰胺单核苷酸与ATP缩合,生成NAD(+)和焦磷酸。鉴于其在细胞生命中的重要作用,该酶是开发新型抗菌剂的一个可能靶点。
利用单同晶置换和密度修正技术相结合的方法,通过X射线晶体学在2.0埃分辨率下解析了嗜压甲烷球菌NMNAT与ATP复合物的结构。该结构显示为由α/β拓扑亚基组成的具有32点群对称性的六聚体。催化位点位于每个亚基表面的一个深裂隙中,在那里观察到一个ATP分子和一个Mg(2+)。一个严格保守的HXGH基序(单字母氨基酸编码)参与ATP的结合和识别。
NMNAT的结构与磷酸泛酰巯基乙胺腺苷酸转移酶的结构非常相似。值得注意的是,尽管这两种酶具有相同的折叠方式和六聚体组装形式,但在它们的四级结构上观察到了显著差异。此外,基于包括HXGH基序在内的结构相似性,我们将NMNAT鉴定为新提出的核苷酸转移酶α/β磷酸二酯酶超家族的一个新成员。我们的结构数据表明,催化机制不依赖于任何蛋白质残基的直接参与,可能是通过底物的最佳定位和过渡态稳定来实现的,正如核苷酸转移酶α/β磷酸二酯酶超家族的其他成员所提出的那样。