Suppr超能文献

Quantum transport through ballistic cavities: soft vs hard quantum chaos.

作者信息

Huckestein B, Ketzmerick R, Lewenkopf CH

机构信息

Institut fur Theoretische Physik, Universitat zu Koln, D-50937 Koln, Germany.

出版信息

Phys Rev Lett. 2000 Jun 12;84(24):5504-7. doi: 10.1103/PhysRevLett.84.5504.

Abstract

We study transport through a two-dimensional billiard attached to two infinite leads by numerically calculating the Landauer conductance and the Wigner time delay. In the generic case of a mixed phase space we find a power-law distribution of resonance widths and a power-law dependence of conductance increments apparently reflecting the classical dwell time exponent, in striking difference to the case of a fully chaotic phase space. Surprisingly, these power laws appear on energy scales below the mean level spacing, in contrast to semiclassical expectations.

摘要

相似文献

1
Quantum transport through ballistic cavities: soft vs hard quantum chaos.
Phys Rev Lett. 2000 Jun 12;84(24):5504-7. doi: 10.1103/PhysRevLett.84.5504.
3
Quantum localization of chaotic eigenstates and the level spacing distribution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052913. doi: 10.1103/PhysRevE.88.052913. Epub 2013 Nov 20.
4
Fractal analysis of chaotic classical scattering in a cut-circle billiard with two openings.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):055205. doi: 10.1103/PhysRevE.65.055205. Epub 2002 May 14.
5
Signatures of chaos in the Brillouin zone.
Chaos. 2017 Oct;27(10):104604. doi: 10.1063/1.5001186.
6
Shot noise in ballistic quantum dots with a mixed classical phase space.
Phys Rev Lett. 2002 Aug 5;89(6):066801. doi: 10.1103/PhysRevLett.89.066801. Epub 2002 Jul 19.
9
Conductance stability in chaotic and integrable quantum dots with random impurities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022901. doi: 10.1103/PhysRevE.92.022901. Epub 2015 Aug 3.
10
Dynamical properties of the soft-wall elliptical billiard.
Phys Rev E. 2016 Aug;94(2-1):022218. doi: 10.1103/PhysRevE.94.022218. Epub 2016 Aug 30.

引用本文的文献

1
Scarring in Rough Rectangular Billiards.
Entropy (Basel). 2023 Jan 18;25(2):189. doi: 10.3390/e25020189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验