Weckhuysen BM, Pelgrims J, Schoonheydt RA, Bodart P, Debras G, Collart O, Vansant EF
Centrum voor Oppervlaktechemie en Katalyse, Department Interfasechemie, K.U.Leuven, Heverlee, Belgium.
Chemistry. 2000 Aug 18;6(16):2960-70. doi: 10.1002/1521-3765(20000818)6:16<2960::aid-chem2960>3.0.co;2-7.
Chromium acetyl acetonate [Cr(acac)3] complexes have been grafted onto the surface of two mesoporous crystalline materials; pure silica MCM-41 (SiMCM-41) and Al-containing silica MCM-41 with an Si:Al ratio of 27 (AlMCM-41). The materials were characterized with X-ray diffraction, N2 adsorption, thermogravimetrical analysis, diffuse reflectance spectroscopy in the UV-Vis-NIR region (DRS), electron spin resonance (ESR) and Fourier transform infrared spectroscopy. Hydrogen bonding between surface hydroxyls and the acetylacetonate (acac) ligands is the only type of interaction between [Cr(acac)3] complexes and SiMCM-41, while the deposition of [Cr(acac)3] onto the surface of AlMCM-41 takes place through either a ligand exchange reaction or a hydrogen-bonding mechanism. In the as-synthesized materials, Cr3+ is present as a surface species in pseudo-octahedral coordination. This species is characterized by high zero-field ESR parameters D and E, indicating a strong distortion from O(h), symmetry. After calcination, Cr3+ is almost completely oxidized to Cr6+, which is anchored onto the surface as dichromate, some chromate and traces of small amorphous Cr2O3 clusters and square pyramidal Cr5+ ions. These materials are active in the gas-phase and slurry-phase polymerization of ethylene at 100 degrees C. The polymerization activity is dependent on the Cr loading, precalcination temperature and the support characteristics: a 1 wt % [Cr(acac)3]-AlMCM-41 catalyst pretreated at high temperatures was found to be the most active material with a polymerization rate of 14000 g polyethylene per gram of Cr per hour. Combined DRS-ESR spectroscopies were used to monitor the reduction process of Cr(6+/5+) and the oxidation and coordination environment of Cr(n+) species during catalytic action. It will be shown that the polymer chains initially produced within the mesopores of the Cr-MCM-41 material form nanofibres of polyethylene with a length of several microns and a diameter of 50 to 100 nanometers. These nanofibres (partially) cover the outer surface of the MCM-41 material. The catalyst particles also gradually break up during ethylene polymerization resulting in the formation of crystalline and amorphous polyethylene with a low bulk density and a melt flow index between 0.56 and 1.38g per 10 min; this indicates the very high molecular weight of the polymer.
乙酰丙酮铬(III)[Cr(acac)₃]配合物已接枝到两种介孔晶体材料的表面;纯硅MCM-41(SiMCM-41)和硅铝比为27的含铝硅MCM-41(AlMCM-41)。通过X射线衍射、N₂吸附、热重分析、紫外-可见-近红外区域的漫反射光谱(DRS)、电子自旋共振(ESR)和傅里叶变换红外光谱对材料进行了表征。表面羟基与乙酰丙酮(acac)配体之间的氢键是[Cr(acac)₃]配合物与SiMCM-41之间唯一的相互作用类型,而[Cr(acac)₃]在AlMCM-41表面的沉积是通过配体交换反应或氢键机制进行的。在合成后的材料中,Cr³⁺以伪八面体配位的表面物种形式存在。该物种的特征是具有高的零场ESR参数D和E,表明其与O(h)对称性有很大偏差。煅烧后,Cr³⁺几乎完全氧化为Cr⁶⁺,以重铬酸盐、一些铬酸盐以及少量无定形Cr₂O₃簇和四方锥Cr⁵⁺离子的形式锚定在表面。这些材料在100℃下对乙烯的气相和淤浆相聚合具有活性。聚合活性取决于Cr负载量、预煅烧温度和载体特性:发现一种在高温下预处理的1 wt%[Cr(acac)₃]-AlMCM-41催化剂是活性最高的材料,聚合速率为每克Cr每小时14000 g聚乙烯。结合DRS-ESR光谱用于监测催化作用过程中Cr(6+/5+)的还原过程以及Cr(n+)物种的氧化和配位环境。结果表明,最初在Cr-MCM-41材料介孔内生成的聚合物链形成了长度为几微米、直径为50至100纳米的聚乙烯纳米纤维。这些纳米纤维(部分)覆盖了MCM-41材料的外表面。在乙烯聚合过程中,催化剂颗粒也逐渐破碎,导致形成结晶和无定形聚乙烯,其堆积密度低,熔体流动指数在0.56至1.38 g/10 min之间;这表明聚合物的分子量非常高。